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Abstract

Classical cryptography is playing a major role in securing the Internet. Banking transactions,
medical records, personal and military messages are transmitted securely through the
Internet using classical encryption and signature algorithms designed and developed over
the last decades. However, today we face new security challenges that arise in cloud settings
that cannot be solved effectively by these classical algorithms. In this thesis, we address
three major challenges that arise in cloud settings and present new cryptographic algorithms
to solve them.

Privacy of data. How can a user efficiently and securely share data with multiple
authorized receivers through the cloud? To address this challenge, we present attribute-
based and predicate encryption schemes for circuits of any arbitrary polynomial size.
Our constructions are secure under the standard learning with errors (LWE) assumption.
Previous constructions were limited to Boolean formulas, captured by the complexity class
𝑁𝐶1.

Privacy of programs. How can a user share a program, which may include some secrets,
preserving its functionality and without leaking any information about the secrets? Program
obfuscation is a mechanism that allows to scramble a program preserving its input/output
functionality while preventing reverse engineering. We describe a new graph-induced
multilinear maps from lattices and show how it can be used to construct a candidate general
purpose program obfuscator. Our construction uses standard (random) integer lattices.
Previous constructions of mutilinear maps relied on hardness of problems in either principal
ideal lattices or integers and were subjected to many algebraic attacks.

Integrity of computations. How can a user outsource computations over a large database
to the cloud and allow anyone efficiently authenticate the results? To address this, we
present a fully homomorphic signature scheme for arbitrary circuits. The scheme allows
the cloud server to run arbitrary computation, represented by circuit 𝐶, on the signed
data 𝑥 to get 𝑦 = 𝐶(𝑥) and produce a short “proof” 𝜎 that can be used by anyone to
authenticate the output 𝑦. Our scheme is secure under the short integer solution (SIS)
problem in standard lattices. Previous constructions of homomorphic signatures were limited
to evaluating polynomials of constant degree.

Thesis Supervisor: Vinod Vaikuntanathan, Assistant Professor
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Chapter 1

Introduction

The Internet has transformed how we communicate, share information and do business.
Today almost every task can be performed online via a few touches of computer keys. We
constantly generate, update, query and analyze large volumes of data. We store our data
in the cloud and our daily lives rely on integrity and availability of this data on the cloud
servers at all times. Yet, we lose control of the data once it leaves our personal devices.

Emails, photos, documents, and even this thesis are stored somewhere in the cloud. The
cloud service provider “knows” everything about us, so an attacker just needs to find one (or
few) weakness in their system to gain absolute control of everyones data. So the fundamental
question is:

How can we secure data in the cloud?

Before we can answer this question, we must understand what we mean by security. The
cloud is used for many purposes: storage, data sharing, outsourcing computations, etc.
Therefore, we must first fully understand what notion of security is needed for each use case.

Systems to the Rescue? A standard approach taken by practitioners is to isolate cloud
servers from adversaries. However, servers have many points of entry (at software and
hardware levels) and systems often rely on many assumptions that are not well understood
or formulated. But an adversary only needs to find a single broken door to compromise the
entire system. As practice shows, adversaries are very successful in finding broken doors,
gaining access to the systems and stealing data. We need a better approach where we can
reduce the security of an entire system to simple, concise and well-understood assumption.

Cryptography to the Rescue? Classical cryptography has helped us tremendously
to secure the Internet. It provides formal security models and concrete intractability
assumptions which are simpler to study. If often allows to reduce security of an entire
system to a single crypto-system built from strong mathematics. So, why can’t we use the
same standard cryptographic algorithms to help us secure the data in the cloud? A simple
answer is that these algorithms are not flexible enough: They only offer an all-or-nothing
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mechanism to data control. For instance, in the standard encryption, there is only one
secret key. The person that holds the secret key has absolute control over the data, and
everyone else has no control. Now, suppose you want to securely share a digital photo with a
selected group of your friends. Of course, encrypting the photo under everyones keys is very
inefficient. Alternatively, you may encrypt the photo under someone’s key and put all trust
into that person, assuming that he/she will only share it with the selected friends. Naturally,
humans also fail and social engineering attacks are some of the easiest to exploit. We need
new cryptographic tools that naturally enable solutions to the security challenges that arise
in the cloud-settings.

1.1 Privacy of Data: Attribute-based and Predicate
Encryption

Suppose a client holding large data would like to utilize a cloud server to efficiency share
it with many selected recipients. However, if the cloud server turns malicious or gets
compromised all of the data its clients store may be leaked.

Can we let a client store an encryption of its data in the cloud
and enable selected recipients to be able to decrypt?

For example, suppose a movie provider may wish to encrypt a movie with corresponding
public meta-data attributes (e.g. “comedy”, “2011”, “English”), store the encryption in the
cloud (or broadcast it over physical media) and ensure that only the authorized subscribers
are able to decrypt it. Or a client may wish to outsource inspection of network log files
or credit card transactions for intrusions and fraud to various investigating agencies. In
this case, it should be able to encrypt the files under the corresponding secret meta-data
attributes, store the encryption in the cloud and ensure that only authorized investigators
learn the files or the meta-data attributes.

Attribute-based encryption [SW05, GPSW06] is a mechanism which enables fine-grained
control of access to encrypted data. In attribute-based encryption, an encryption of a message
𝑚 is labeled with a public attribute vector 𝑎 (also called the “index”), and secret keys are
associated with predicates 𝑃 . A secret key sk𝑃 decrypts the ciphertext and recovers the
message 𝑚 if and only if 𝑎 satisfies the predicate, namely if and only if 𝑃 (𝑎) = 1.

Attribute-based encryption captures as a special case previous cryptographic notions
such as identity-based encryption (IBE) [Sha84, BF01, Coc01] and fuzzy IBE [SW05]. It
has also found applications in scenarios that demand complex policies to control access to
encrypted data (such as medical or multimedia data [APG+11, LYZ+13, PPM+14]), as well
as in designing cryptographic protocols for verifiably outsourcing computations [PRV12].

In contrast to attribute-based encryption, in predicate encryption [BW07, SBC+07,
KSW08] the ciphertexts are associated with descriptive private attribute 𝑎 in addition to
messages 𝑚, secret keys are associated with a predicate 𝑃 , and a secret key decrypts the
ciphertext to recover 𝑚 if and only if 𝑃 (𝑎) = 1. The security requirement for predicate
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encryption enforces privacy of 𝑎 and the plaintext even amidst multiple secret key queries:
an adversary holding secret keys for different query predicates learns nothing about the
attribute 𝑎 and the plaintext 𝑚 if none of them is individually authorized to decrypt the
ciphertext.

In the past few years, there has been significant progress in attribute-based and predicate
encryptions in terms of efficiency, security guarantees, and diversifying security assumptions
[GPSW06, BW07, SBC+07, KSW08, Wat09, LW10, LOS+10, CHKP12, ABB10a, OT10,
AFV11, GMW15]. On the other hand, little progress has been made in terms of supporting
larger classes of predicates. The state of the art is Boolean formulas [GPSW06, LOS+10,
OT10], which is a subclass of log-space computations. While these existing encryption
systems were expressive,

“the central challenge to construct a system
that supports creation of keys for any predicate”,

in both public and private attribute settings was posed by Boneh, Sahai and Waters [BSW12].

Our Results. We construct attribute-based encryption schemes where keys can be
generated for circuits of every a-priori bounded depth, based on the learning with errors
(LWE) assumption. In particular, we show:

Theorem 1.1.1 (informal). Under the LWE assumption, there exists an attribute-based
encryption scheme for all circuits, with succinct ciphertexts independent of the size of the
circuits.

In the course of our construction, we present a new framework for constructing attribute-
based encryption schemes, based on a primitive that we call “two-to-one recoding” (TOR).
Our methodology departs significantly from the current line of work on attribute-based
encryption [GPSW06, LOS+10] and instead, builds upon the connection to garbled circuits
developed in the context of bounded collusions [SS10b, GVW12]. Along the way, we make the
first major progress towards the 25-year-old open problem of constructing reusable garbled
circuits. In particular, we obtain the first construction of reusable garbled circuits that
satisfies authenticity, but not privacy.

We also construct a predicate encryption scheme for circuits of every a-priori bounded
depth, based on the learning with errors (LWE) assumption. In particular, we show:

Theorem 1.1.2. Under the LWE assumption, there exists a predicate encryption scheme for
all circuits, with succinct ciphertexts and secret keys independent of the size of the circuit.

To support circuits of depth 𝑑, in both attribute-based and predicate encryptions the
parameters of the schemes grow with poly(𝑑), and we require sub-exponential 𝑛Ω(𝑑) hardness
of the LWE assumption.

Our result on predicate encryption subsumes all prior works under standard cryptographic
assumptions, apart from a few exceptions pertaining to the inner product predicate
[BW07, KSW08, OT12a]. These results achieve a slightly stronger security notion for
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predicate encryption, known as full (or strong) security (please refer to Sections 4.3.1, 4.2.1
for definitions).

In a recent work, Garg et al. [GGH+13b] gave a candidate construction of predicate
encryption (in fact, the construct a more general primitive known as functional encryption)
for arbitrary circuits. However, the construction relies on “multi-linear maps” [GGH13a,
CLT13], for which we have few candidates and which rely on complex intractability
assumptions that are presently poorly understood and not extensively studied in the
literature and were recently attacked [CLT14, CHL+15, HJ15].

Relations to Functional Encryption. As we explained above, predicate encryption is
more powerful notion than attribute-based encryption because it guarantees secrecy of the
attribute vector 𝑎 wrt users that are not authorized to decrypt 𝑚. In turn, functional
encryption is more powerful notion than predicate encryption. This is because in functional
encryption the attribute vector 𝑎 secret hidden even with respect to users that are authorized
to decrypt and learn 𝑚. In other words, roughly speaking, functional encryption guarantees
that no information about the attribute 𝑎 other than the result 𝑃 (𝑎) can be learned. (As
usually defined, functional encryption does not even have a separate message 𝑚 as the
input and the user only learns 𝑃 (𝑎) in clear). In Table 1.1 we summarize the interface for
the three notions, their security guarantees and major known constructions from standard
assumptions. It remains a fascinating open problem to go beyond predicate encryption and
realize functional encryption from standard learning with errors.

Notion Interface Security Guarantees Constructions
ABE ct← Enc(𝑎,𝑚) 𝑚 is secret iff 𝑃 (𝑎) = 0 Formulas: [GPSW06, LOS+10]

[OT10, Boy13a, BV14]
𝑎 is always public Circuits: This Thesis,[BGG+14]

PE ct← Enc(𝑎,𝑚) 𝑎,𝑚 are secret iff 𝑃 (𝑎) = 0 Formulas: [AFV11, KSW08, OT12b]
Circuits: This Thesis

FE ct← Enc(𝑎) a is always secret, Formulas: [KSW08]
user learns 𝑃 (𝑎) Circuits: Open

Table 1.1: Distinctions between attribute-based, predicate and functional encryptions (ABE,
PE, and FE, resp.), as well as notable constructions from standard assumptions such as
bilinear or learning-with-errors. In all three notions, the secrey key 𝑠𝑘𝑃 is generated with a
special key-generation algorithm.

1.2 Privacy of Programs: Program Obfuscation
Suppose a client has a program that it would like to share with many users through the
cloud.

How can it let other run the program without revealing secrets in its code?
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On the high level, what we want is an obfuscator algorithm that complies a program into
another “unintelligible” program that preserves the input/output functionality of the original.
The formal study of this question was initiated by Barak et al. [BGI+01], who presented some
lower bounds for strong security models (namely, they showed that virtual-black box security
is impossible to achieve), but the realization of weaker models (known as indistinguishability
obfuscation (IO)) was left a fascinating open problem. In a recent break-through, Garg et
al. [GGH+13b] presented the first candidate IO obfuscator. They also construct a new tool,
graded multilinear maps, that is used crucially in their construction. On the high level,
multilinear maps allow to encode secrets and perform (restricted) homomorphic operations
over these encodings. Moreover, at the end of the computation, given an encoding at the
“output level” and a special zero-test parameter, it is possible to test if the encoded value
encodes zero. As it turns out, this functionality is powerful enough to realize numerous
cryptographic applications such as witness encryption, functional encryption, program
obfuscation and many more [GGSW13, GGH+13c, GGH+13b, BGG+14, BZ14].

Our Results. We present a new “graph-induced” variant of multilinear maps and provide
a new candidate general purpose obfuscator. In this variant, the multilinear map is defined
with respect to a directed acyclic graph. Namely, encoded value are associated with paths
in the graph, and it is only possible to add encoding relative to the same paths, or to
multiply encodings relative to “connected paths” (i.e., one ends where the other begins).
Our candidate construction of graph-induced multilinear maps does not rely on ideal lattices
or hard-to-factor integers [GGH13a, CLT13]. Rather, we use standard random lattices such
as those used in LWE-based cryptography. We follow a similar outline to the previous
constructions, except our instance generation algorithm takes as input a description of a
graph. Furthermore, our zero-tester does not include any secrets about the relevant lattices.
Rather, in our case the zero-tester is just a random matrix, similar to a public key in common
LWE-based cryptosystems.

Giving up the algebraic structure of ideal lattices and integers could contribute to a
better understanding of the candidate itself, reducing the risk of unforeseen algebraic crypt-
analytical attacks. Both of the previous constructions [GGH13a, CLT13] were recently
attacked due to their extensive algebraic properties [CLT14, CHL+15, HJ15]. On the flip
side, using our construction is sometimes harder to use than previous construction, exactly
because we give up some algebraic structure. For that same reason, we were not able so far
to reduce any of our new construction to “nice” hardness assumptions.

Connections of Program Obfuscation and Functional Encryption. Recently,
Bitansky et al. [BV15] and Ananth et al. [AJ15] showed a fascinating connection between
program obfuscation and functional encryption. In particular, they how to construct
indistinguishability obfuscation from singe-key compact functional encryption. Intuitively, in
single-key compact functional encryption only one secret key is ever issued and the running
time of the encryption algorithm must be independent of the function description size or its
output length. Unfortunately, in existing single-key constructions of functional encryption,
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the runtime of the encryption algorithm either depends on the size of the function description
size [GVW12], or the output length [GKP+13b]. Also, if one is able to extend our predicate
encryption to such notion of functional encryption (even for a single key), then he/she would
obtain full-fledged program obfuscator from standard learning with errors assumption.

1.3 Integrity of Computation: Homomorphic Signatures

Suppose a user holds a large database and it wants to outsource computations over it to a
cloud server.

How can he/she (and others) authenticate the results
of the computations produced by the cloud?

In a homomorphic signature scheme, a user signs some large dataset 𝑥 using her secret
signing key and uploads the signed data to an untrusted remote cloud server. The cloud
server can then run some computation 𝑦 = 𝑓(𝑥) over the signed data and homomorphically
derive a short signature 𝜎𝑓,𝑦 certifying that 𝑦 is the correct output of the computation 𝑓 .
Anybody can verify the tuple (𝑓, 𝑦, 𝜎𝑓,𝑦) using Alice’s public verification key and become
convinced of this fact without having to retrieve the entire underlying data.

Many prior works consider the question of homomorphic signatures and homomorphic
message authentication codes (MACs with private verification) for restricted homomor-
phisms, and almost exclusively for linear functions : [ABC+07, SBW08, DVW09, AKK09,
AB09, BFKW09, GKKR10, BF11a, AL11, BF11b, CFW12, Fre12]. Such MACs and
signautres have interesting applications to network coding and proofs of retrievability. Boneh
and Freeman [BF11a] were the first to consider homomorphic signatures beyond linear
functions, and propose a general definition of such signatures. They present a scheme that
can evaluate arbitrary polynomials over signed data, where the maximal degree 𝑘 of the
polynomial is fixed a priori and the size of the evaluated signature grows (polynomially) in
𝑘. If we want to translate this to the setting of circuits, then a circuit of depth 𝑑 can be
represented by a polynomial of degree as high as 𝑘 = 2𝑑, and therefore the signature size can
grow exponentially in the depth of the circuit. The construction is based on the hardness
of the Small Integer Solution (SIS) problem in ideal lattices and has a proof of security in
the random-oracle model. The recent work of Catalano et al. [CFW14] gives an alternate
solution using multi-linear maps which removes the need for random oracles at the cost of
having large public parameters. The main open question left by these works is to construct
signatures with greater levels of homomorphism, and ideally a fully homomorphic scheme
that can evaluate arbitrary circuits and rely on hardness of well-studied assumptions.

Our Results. We construct the first (leveled) fully homomorphic signature schemes that
can evaluate arbitrary circuits over signed data, where only the maximal depth 𝑑 of the
circuit needs to be fixed a priori. The size of the evaluated signature grows polynomially in
𝑑, but is otherwise independent of the data size or the circuit size. In particular, we show:

18



Theorem 1.3.1 (informal). Assuming hardness of small integer solution (SIS) problem in
standard lattices, there exists a fully homomorphic signature scheme for every a-priori circuit
depth bound 𝑑. Moreover, the size of evaluated signature is poly(𝑑, 𝜆) where 𝜆 is the security
parameter.

We get a scheme in the standard model, where the maximal dataset size needs to be
bounded by some polynomial 𝑁 during setup and the size of the public parameters is linear
in 𝑁 . In the random-oracle model, we get rid of this caveat and get a scheme with short
public parameters and without any a-priori bound on the dataset size. In both cases, the
user can sign arbitrarily many different datasets by associating each dataset with some label
(e.g., a file name). The verifier must know the label of the dataset on which the computation
was supposed to be performed when verifying the output.

1.4 Organization and Sources of This Thesis
The remainder of the thesis is organized as follows.

Chapter 2: Is dedicated to preliminaries and background on lattices. We summarize
lattice algorithms needed for our construction in this section.

Chapters 3, 4: These two chapters are dedicated to the privacy of data. In Chapter 3, we
present our attribute-based encryption for circuits. We first present definitions of attribute-
based encryption. Then, we proceed by describing our new framework (TOR), show how
to instantiate it from lattices, and build our attribute-based encryption from it. We also
present a separate construction for branching programs from milder lattice assumptions and
pairings. In Chapter 4, we present definition and our construction of predicate encryption for
circuits. We point out that our Chapter 4 is subsequent to works [GKP+13b] and [BGG+14]
which are subsequent and built on top of our Chapter 3.

Chapter 5: This chapter is dedicated to the privacy of programs. We describe our
new variant of graph-induced multilinear maps and provide a candidate instantiation from
lattices. Then, we show how to use it to construct a non-interactive key-exchange scheme
and a general purpose program obfuscator.

Chapter 6: This chapter is dedicated to the integrity of computation. We first present
definitions of homomorphic signatures. Then, we define a new tool denoted by homomorphic
trapdoor functions, and show how to instantiate it from lattices. Finally, using the new tool
we construct homomorphic signature scheme for circuits.

The material for Chapters 3− 6 is taken from the following papers, respectively:

1. Sergey Gorbunov, Vinod Vaikuntanathan, Hoeteck Wee: Attribute-based encryption
for circuits. STOC 2013: 545-554;
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2. Sergey Gorbunov, Vinod Vaikuntanathan, Hoeteck Wee: Predicate Encryption for
Circuits from LWE. CRYPTO 2015;

3. Craig Gentry, Sergey Gorbunov, Shai Halevi: Graph-Induced Multilinear Maps from
Lattices. TCC 2015: 498-527;

4. Sergey Gorbunov, Vinod Vaikuntanathan, Daniel Wichs: Leveled Fully Homomorphic
Signatures from Standard Lattices. STOC 2015.
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Chapter 2

Lattice Preliminaries

Notation. Let PPT denote probabilistic polynomial-time. For any integer 𝑞 ≥ 2, we let
Z𝑞 denote the ring of integers modulo 𝑞 and we represent Z𝑞 as integers in (−𝑞/2, 𝑞/2]. We
let Z𝑛×𝑚

𝑞 denote the set of 𝑛 ×𝑚 matrices with entries in Z𝑞. We use bold capital letters
(e.g. A) to denote matrices, bold lowercase letters (e.g. x) to denote vectors. The notation
AT denotes the transpose of the matrix A.

If A1 is an 𝑛×𝑚matrix and A2 is an 𝑛×𝑚′ matrix, then [A1‖A2] denotes the 𝑛×(𝑚+𝑚′)
matrix formed by concatenating A1 and A2. A similar notation applies to vectors. When
doing matrix-vector multiplication we always view vectors as column vectors.

We represent elements of Z𝑞 as integers in the range (−𝑞/2, 𝑞/2] and define the absolute
value |𝑥| of 𝑥 ∈ Z𝑞 by taking its representative in this range. For a vector u ∈ Z𝑛

𝑞 we write
||u||∞ ≤ 𝛽 if each entry 𝑢𝑖 in u satisfies |𝑢𝑖| ≤ 𝛽. Similarly, for a matrix U ∈ Z𝑛×𝑚

𝑞 we write
||U||∞ ≤ 𝛽 if each entry 𝑢𝑖,𝑗 in U satisfies |𝑢𝑖,𝑗| ≤ 𝛽.

We say a function 𝑓(𝑛) is negligible if it is 𝑂(𝑛−𝑐) for all 𝑐 > 0, and we use negl(𝑛) to
denote a negligible function of 𝑛. We say 𝑓(𝑛) is polynomial if it is 𝑂(𝑛𝑐) for some 𝑐 > 0,
and we use poly(𝑛) to denote a polynomial function of 𝑛. We say an event occurs with
overwhelming probability if its probability is 1 − negl(𝑛). The function lg 𝑥 is the base 2
logarithm of 𝑥. The notation ⌊𝑥⌉ denotes the nearest integer to 𝑥, rounding towards 0 for
half-integers.

2.1 Lattices

Let B = {b1, . . . ,b𝑛} ⊂ R𝑛 consist of 𝑛 linearly independent vectors. The 𝑛-dimensional
lattices Λ generated by the basis B is

Λ = {Bc =
∑︁
𝑖∈[𝑛]

c𝑖 · b𝑖 : c ∈ Z𝑛}

In this thesis, we will be using integer lattices, namely discrete subgroups of Z𝑚.
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Definition 2.1.1. For a prime 𝑞, A ∈ Z𝑛×𝑚
𝑞 and 𝑢 ∈ Z𝑛

𝑞 , define:

Λ𝑞(A) := {e ∈ Z𝑚 s.t. ∃s ∈ Z𝑛
𝑞 where A𝑇 s = e mod 𝑞}

Λ⊥𝑞 (A) := {e ∈ Z𝑚 s.t. A𝑇e = 0 mod 𝑞}
Λu

𝑞 (A) := {e ∈ Z𝑚 s.t. Ae = u mod 𝑞}

Observe that if t ∈ Λu
𝑞 (A), then Λu

𝑞 (A) = Λ⊥𝑞 (A) + t and hence Λu
𝑞 (A) is a shift of

Λ⊥𝑞 (A).

2.2 Gaussian distribution and Metrics
Gaussian distributions. For any positive parameter 𝜎 ∈ R>0, let 𝜌𝜎(x) := exp

(︀
−𝜋‖x‖2/𝜎2

)︀
be the Gaussian function on R𝑚 with parameter 𝜎 (and center 0). Let 𝜌𝜎(Z𝑚) :=∑︀

x∈Z𝑚 𝜌𝜎(x) be the discrete integral of 𝜌𝜎 over Z𝑚 (which always converges). Let 𝐷Z𝑚,𝜎 be
the truncated discrete Gaussian distribution over Z𝑚 with parameter 𝜎. Specifically, for all
y ∈ Z𝑚, we have 𝐷Z𝑚,𝜎(y) = 𝜌𝜎(y)

𝜌𝜎(Z𝑚)
. Moreover, when we sample from 𝐷Z𝑚,𝜎 and || · ||∞

norm exceeds
√
𝑚 · 𝜎, we replace the output by 0. Note that 𝐷Z𝑚,𝜎 is

√
𝑚 · 𝜎-bounded.

The Gram-Schmidt Norm of a Basis. Let S = [s1, . . . , s𝑘] be a set of vectors in R𝑚.
We use the following notation:

∙ ||S|| denote the 𝐿2 length of the longest vector in 𝑆, i.e. ||S|| := max𝑖 ||s𝑖|| for 1 ≤ 𝑖 ≤ 𝑘.

∙ S̃ := {s̃1, . . . , s̃𝑘} ⊂ R𝑚 denote the Gram-Schmidt orthogonalization of the vectors
s1, . . . , s𝑘 taken in that order.

We refer to ‖S‖GS := ||S̃|| as the Gram-Schmidt norm of S.

Entropy and Statistical Distance. For random variables 𝑋, 𝑌 with support 𝒳 ,𝒴 re-
spectively, we define the statistical distance △(𝑋, 𝑌 )

def
= 1

2

∑︀
𝑢∈𝒳∪𝒴 |Pr[𝑋 = 𝑢]− Pr[𝑌 = 𝑢]|.

We say that two ensembles of random variables 𝑋 = {𝑋𝜆}, 𝑌 = {𝑌𝜆} are statistically
close, denoted by 𝑋

stat
≈ 𝑌 , if △(𝑋𝜆, 𝑌𝜆) = negl(𝜆). The min-entropy of a random variable

𝑋, denoted as H∞(𝑋), is defined as H∞(𝑋)
def
= − log(max𝑥 Pr[𝑋 = 𝑥]). The (average-

)conditional min-entropy of a random variable 𝑋 conditioned on a correlated variable 𝑌 ,
denoted as H∞(𝑋|𝑌 ), is defined as

H∞(𝑋|𝑌 )
def
= − log

(︂
E

𝑦←𝑌

[︁
max

𝑥
Pr[𝑋 = 𝑥|𝑌 = 𝑦]

]︁)︂
.

The optimal probability of an unbounded adversary guessing 𝑋 given the correlated value
𝑌 is 2−H∞(𝑋|𝑌 ).

Lemma 2.2.1 ([DORS08]). Let 𝑋, 𝑌 be arbitrarily random variables where the support of
𝑌 lies in 𝒴. Then H∞(𝑋|𝑌 ) ≥ H∞(𝑋)− log(|𝒴|).
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2.3 Lattice Assumptions

The Learning With Errors (LWE) Assumption. [Reg09] For an integer 𝑞 = 𝑞(𝑛) ≥ 2
and a (truncated) discrete Gaussian error distribution 𝜒 = 𝜒(𝑛) over Z𝑞, the learning with
errors assumption dLWE𝑛,𝑚,𝑞,𝜒 states that it is computationally hard to distinguish between
the following pairs of distributions:

{A,A𝑇 s + e} and {A,u}

where A
$← Z𝑛×𝑚

𝑞 , s
$← Z𝑛

𝑞 , e
$← 𝜒𝑚,u

$← Z𝑚
𝑞 .

Connection to lattices. Let 𝐵 = 𝐵(𝑛) ∈ N. A family of distributions 𝜒 = {𝜒𝑛}𝑛∈N is called
𝐵-bounded if

Pr[𝜒 ∈ {−𝐵, . . . , 𝐵 − 1, 𝐵}] = 1.

There are known quantum [Reg09] and classical [Pei09] reductions between dLWE𝑛,𝑚,𝑞,𝜒 and
approximating short vector problems in lattices in the worst case, where 𝜒 is a 𝐵-bounded
(truncated) discretized Gaussian for some appropriate 𝐵. The state-of-the-art algorithms
for these lattice problems run in time nearly exponential in the dimension 𝑛 [AKS01, MV10];
more generally, we can get a 2𝑘-approximation in time 2𝑂̃(𝑛/𝑘). Combined with the connection
to LWE, this means that the dLWE𝑛,𝑚,𝑞,𝜒 assumption is quite plausible for a poly(𝑛)-bounded
distribution 𝜒 and 𝑞 as large as 2𝑛𝜖 (for any constant 0 < 𝜖 < 1). Throughout this paper,
the parameter 𝑚 = poly(𝑛), in which case we will shorten the notation slightly to LWE𝑛,𝑞,𝜒.

The Short Integer Solution Problem. [MR07] Let 𝑛,𝑚, 𝑞, 𝛽 be integer parameters.
In the SIS(𝑛,𝑚, 𝑞, 𝛽) problem, the attacker is given a uniformly random matrix A ∈ Z𝑛×𝑚

𝑞

and her goal is to find a vector u ∈ Z𝑚
𝑞 with u ̸= 0 and ||u||∞ ≤ 𝛽 such that A · u = 0.1

For parameters 𝑛 = 𝑛(𝜆),𝑚 = 𝑚(𝜆), 𝑞 = 𝑞(𝜆), 𝛽 = 𝛽(𝜆) defined in terms of the security
parameter sec, the SIS(𝑛,𝑚, 𝑞, 𝛽) hardness assumption states any PPT attacker 𝒜 we have

Pr
[︁

A · u = 0 ∧ ||u||∞ ≤ 𝛽(𝜆) ∧ u ̸= 0 : A
$← Z𝑚(𝜆)×𝑛(𝜆)

𝑞(𝜆) ,u← 𝒜(1𝜆,A)
]︁
≤ negl(𝜆).

The SIS problem is known to be as hard as certain worst-case problems (e.g., SIVP) in
standard lattices [Ajt96, Mic04, MR07, MP13]. It is is also implied by the hardness of
learning with errors (LWE). See cited works for exact details of parameters. In this work,
we will need to rely on the SIS assumption with super-polynomial 𝛽. In particular, we
will assume that for any 𝛽 = 2poly(𝜆) there are some 𝑛 = poly(𝜆), 𝑞 = 2poly(𝜆) (clearly,
𝑞 > 𝛽) such that for all 𝑚 = poly(𝜆) the SIS(𝑛,𝑚, 𝑞, 𝛽) hardness assumption holds. The
above parameters translate to assuming hardness of worst-case lattice problems with sub-
exponential approximation factors, which is widely believed to hold.

1Often, the SIS problem is stated with ℓ2 norm rather than ℓ∞ norm. It’s clear that the two versions are
equivalent up to some small losses of parameters. Therefore, we choose to rely on the ℓ∞ norm for simplicity.
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2.4 Lattice Algorithms

Lemma 2.4.1 (Lattice Trapdoors [Ajt99, GPV08, AP09, MP12]). There exist efficient
algorithms TrapSamp, SamPre such that the following holds. Given integers 𝑛 ≥ 1, 𝑞 ≥ 2
there exists some 𝑚* = 𝑚*(𝑛, 𝑞) = 𝑂(𝑛 log 𝑞) such that for all 𝑚 ≥ 𝑚* and all 𝑘 (polynomial
in 𝑛) we have:

1. There is an efficient randomized algorithm TrapSamp(1𝑛, 1𝑚, 𝑞) that outputs a matrix
A ∈ Z𝑛×𝑚

𝑞 and a trapdoor matrix T ∈ Z𝑚×𝑚 such that the distribution of A is negl(𝑛)-
close to uniform.

2. Moreover, there is an efficient algorithm SamPre that with overwhelming probability
over all random choices, does the following: For any u ∈ Z𝑛

𝑞 , and large enough 𝑠 =

Ω(
√
𝑛 log 𝑞), the randomized algorithm SamPre(A,T,u, 𝑠) outputs a vector r ∈ Z𝑚

with norm ||r||∞ ≤ ||r||2 ≤ 𝑠
√
𝑛 (with probability 1). Furthermore, the following

distributions of the tuple (A,T,U,R) are within negl(𝑛) statistical distance of each
other for any polynomial 𝑘 ∈ N:

∙ (A,T)← TrapSamp(1𝑛, 1𝑚, 𝑞); U $← Z𝑛×𝑘
𝑞 ; R← SamPre(A,T,U, 𝑠).

∙ (A,T)← TrapSamp(1𝑛, 1𝑚, 𝑞); R $← (𝐷Z𝑚,𝑠)
𝑘; U := AR (mod 𝑞).

3. Given 𝑛,𝑚, 𝑞 as above, there is an efficiently and deterministically computable matrix
G ∈ Z𝑛×𝑚

𝑞 and a deterministic polynomial-time algorithm G−1 which takes the input
V ∈ Z𝑛×𝑘

𝑞 for any integer 𝑘 and outputs R = G−1(V) such that R ∈ {0, 1}𝑚×𝑘 and
G ·R = V. 2

Lemma 2.4.2 ([MG02, Lemma 7.1]). Let Λ be an 𝑚-dimensional lattice. There is a
deterministic polynomial time algorithm that, given an arbitrary basis of Λ and full-rank
set S = [s1, . . . , s𝑚] in Λ, returns a basis T of Λ satisfying

‖T‖GS ≤ ‖S‖GS and ||T|| ≤ ||S||
√
𝑚/2

We will also use the following algorithms to sample short vectors from specific lattices.

2Note that we are abusing notation and G−1 is not a matrix but rather an algorithm. Often, G ∈ Z𝑛×𝑚
𝑞

is referred to as a primitive matrix [MP12] which is a powers-of-two decomposition of an 𝑛 × 𝑛 identity
matrix (that is, each entry 𝑎 of G is decomposed into a vector [𝑎 · 20, 𝑎 · 21, . . . , 𝑎 · 2log 𝑞]. The algorithm G−1

then simply uses binary bit decomposition to sample for short pre-images.
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Algorithm SampleLeft(A,B,TA,u, 𝛼):

Inputs: a full rank matrix A in Z𝑛×𝑚
𝑞 , a “short” basis T𝐴

of Λ⊥𝑞 (A), a matrix B in Z𝑛×𝑚1
𝑞 , a vector u ∈ Z𝑛

𝑞 , and a
Gaussian parameter 𝛼.

(2.1)

Output: Let F := (A ‖ B). The algorithm outputs a vector
e ∈ Z𝑚+𝑚1 in the coset Λu

𝑞 (F).

Theorem 2.4.3 ([ABB10a, Theorem 17], [CHKP12, Lemma 3.2]). Let 𝑞 > 2, 𝑚 > 𝑛 and
𝛼 > ‖TA‖GS · 𝜔(

√︀
log(𝑚+𝑚1)). Then SampleLeft(A,B,TA,u, 𝛼) taking inputs as in (2.1)

outputs a vector e ∈ Z𝑚+𝑚1 distributed statistically close to 𝐷Λu
𝑞 (F),𝛼, where F := (A ‖ B).

Where ‖T‖GS refers to the norm of Gram-Schmidt orthogonalisation of T.

Algorithm SampleRight(A,B,R,TB,u, 𝛼):

Inputs: matrices A in Z𝑛×𝑘
𝑞 and R in Z𝑘×𝑚, a full rank

matrix B in Z𝑛×𝑚
𝑞 , a “short” basis TB of Λ⊥𝑞 (B), a vector

u ∈ Z𝑛
𝑞 , and a Gaussian parameter 𝛼.

(2.2)

Output: Let F := (A ‖ AR+B). The algorithm outputs a
vector e ∈ Z𝑚+𝑘 in the coset Λu

𝑞 (F).

Often the matrix R given to the algorithm as input will be a random matrix in {1,−1}𝑚×𝑚.
Let 𝑆𝑚 be the 𝑚-sphere {x ∈ R𝑚+1 : ‖x‖ = 1}. We define 𝑠𝑅 := ‖R‖ := supx∈𝑆𝑚−1 ‖R · x‖.

Theorem 2.4.4 ([ABB10a, Theorem 19]). Let 𝑞 > 2,𝑚 > 𝑛 and 𝛼 > ‖TB‖GS·𝑠𝑅·𝜔(
√

log𝑚).
Then SampleRight(A,B,R,TB,u, 𝛼) taking inputs as in (2.2) outputs a vector e ∈ Z𝑚+𝑘

distributed statistically close to 𝐷Λu
𝑞 (F),𝛼, where F := (A ‖ AR + B).

Proof. The algorithm works in three steps:

1. First, it constructs a set TF of (𝑚 + 𝑘) linearly independent vectors in Λ⊥𝑞 (F) such
that

‖TF‖GS < ‖TB‖GS(𝑠𝑅 + 1) < 𝛼/𝜔(
√︀

log𝑚)

To do this, let TB = [b1, . . . ,b𝑚] and for all 𝑖 = 1, . . . ,𝑚 set t𝑖 := (−Rb𝑖|b𝑖) ∈ Z𝑚+𝑘

and view it as a column vector. Then, clearly Ft𝑖 = Bb𝑖 = 0 mod 𝑞 and therefore
𝑡𝑖 ∈ Λ⊥𝑞 (F). Also, for 𝑖 = 1, . . . , 𝑘 let w𝑖 be the 𝑖-th column of the identity matrix I𝑘.
Let u𝑖 be an arbitrary vector in Z𝑚 satisfying Aw𝑖 + Bu𝑖 = 0 mod 𝑞. Set 𝑡𝑖+𝑚 :=
(w𝑖−Ru𝑖|u𝑖) ∈ Z𝑚+𝑘 and view it as a column vector. Then, Ft𝑖+𝑚 = Aw𝑖 +Bu𝑖 = 0
mod 𝑞 and hence t𝑖+𝑚 ∈ Λ⊥𝑞 (F). As it was shown in [ABB10a, Lemma 18], the vectors
TF := [t1, . . . , t𝑚+𝑘] are linearly independent and satisfy ‖TF‖GS ≤ ‖TB‖GS · (𝑠𝑅 + 1).

2. Next, it converts TF into a basis T′F of Λ⊥𝑞 (F) with the same Gram-Schmidt norm as
TF using Lemma 2.4.2.
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3. Finally, it invokes SamPre(F,T′F,u, 𝛼) to generate a vector e ∈ Λu
𝑞 (F). Since 𝛼 >

‖T′F‖GS · 𝜔(
√

log𝑚), the vector e is distributed close to 𝐷Λu
𝑞 (F),𝛼.

Lemma 2.4.5 (Generalized left-over hash lemma [DORS08, Lemmas 2.2b, 2.4]). Let ℋ =
{ℎ : 𝑋 → 𝑌 }ℎ∈ℋ be a universal hash family. Let 𝑓 : 𝑋 → 𝑍 be some function. Then for
any random variable 𝑇 taking values in 𝑋 we have that

△
(︀
(ℎ, ℎ(𝑇 ), 𝑓(𝑇 )) ; (ℎ, 𝑈, 𝑓(𝑇 ))

)︀
≤ 1/2 ·

√︀
𝛾(𝑇 ) · |𝑌 | · |𝑍|

where 𝑈 is chosen at random from 𝑌 and 𝛾(𝑇 ) = max𝑡 𝑃𝑟[𝑇 = 𝑡].

We will also use the following lemma throughout the thesis.

Lemma 2.4.6 ([ABB10a, Lemma 12]). Suppose that 𝑚 ≥ (𝑛 + 1) log 𝑞 + 𝜔(log 𝑛) and that
𝑞 ≥ 2 is prime. Let R be an 𝑚× 𝑘 matrix chosen uniformly from {−1, 1}𝑚×𝑘 mod 𝑞 where
𝑘 = 𝑘(𝑛) is polynomial in 𝑛. Let A and B be matrices chosen uniformly in Z𝑛×𝑚 and Z𝑛×𝑘

respectively. Then for all vectors w ∈ Z𝑚, the distribution (A,AR,R𝑇w) is statistically
close to distribution (A,B,R𝑇w).

Proof. On the high level, the lemma follows from two observations. First, by the standard
left-over-hash lemma we know that (A,AR) and (A,B) are statistically close. Moreover,
Dodis et al. [DORS08] showed that this holds even even little information about R is leaked
(that is R𝑇w in our case). Define the family of hash functions ℋ = {ℎA : Z𝑚

𝑞 → Z𝑛
𝑞 }

where ℎA(r) = Ar and A ∈ Z𝑛×𝑚
𝑞 . Since 𝑞 is prime we have that for all r1 ̸= r2 ∈ Z𝑚

𝑞 there
are exactly 𝑞𝑛(𝑚−1) matrices A ∈ Z𝑛×𝑚

𝑞 such that Ar1 = Ar2. Hence ℋ is universal. For a
vector w ∈ Z𝑚

𝑞 , let 𝑓 : Z𝑚
𝑞 → Z𝑞 be the function 𝑓(r) = r𝑇 ·w. Observe that for a matrix

R ∈ Z𝑚×𝑘
𝑞 whose columns are r1, . . . , r𝑘 ∈ Z𝑚

𝑞 we have that R𝑇w = (𝑓(r1), . . . , 𝑓(r𝑘)) ∈ Z𝑘
𝑞 .

Similarly, the columns of the matrix AR are 𝑘 columns vectors (ℎ𝐴(r1), . . . , ℎ𝐴(r𝑘)).
Using the notation of Lemma 2.4.5, observe that the 𝑘 columns of R are independent

vectors uniform in {1,−1}𝑚. Therefore, letting 𝑇1, . . . , 𝑇𝑚 be 𝑚 columns of R and setting
𝑋 = Z𝑚

𝑞 , 𝑌 = Z𝑛
𝑞 and 𝑍 = Z𝑞 we obtain that

△
(︀
(A,AR,R𝑇w) ; (A,B,R𝑇w)

)︀
≤ 𝑘/2 ·

√︀
2−𝑚 · 𝑞𝑛 · 𝑞 = 𝑘/2 ·

√
2−𝑚+(𝑛+1) log 𝑞.

When 𝑚 > (𝑛 + 1) log 𝑞 + 𝜔(log 𝑛) and 𝑘 is polynomial in 𝑛, the quantity on the right is
negl(𝑛), as required.
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Chapter 3

Attribute-Based Encryption for Circuits

Attribute-based encryption [SW05, GPSW06] is an emerging paradigm for public-key
encryption which enables fine-grained control of access to encrypted data. In traditional
public-key encryption, access to the encrypted data is all or nothing: given the secret key,
one can decrypt and read the entire message, but without it, nothing about the message is
revealed (other than its length). In attribute-based encryption, an encryption of a message
𝑚 is labeled with a public attribute vector 𝑎 (also called the “index”), and secret keys are
associated with predicates 𝑃 . A secret key sk𝑃 decrypts the ciphertext and recovers the
message 𝑚 if and only if 𝑎 satisfies the predicate, namely if and only if 𝑃 (𝑎) = 1.

Attribute-based encryption captures as a special case previous cryptographic notions
such as identity-based encryption (IBE) [Sha84, BF01, Coc01] and fuzzy IBE [SW05]. It
has also found applications in scenarios that demand complex policies to control access to
encrypted data (such as medical or multimedia data [APG+11, LYZ+13, PPM+14]), as well
as in designing cryptographic protocols for verifiably outsourcing computations [PRV12] (see
Section 3.1.2 for further discussion).

The crucial component in the security requirement for attribute-based encryption
stipulates that it resists collusion attacks, namely any group of users collectively learns
nothing about the message 𝑚 if none of them is individually authorized to decrypt the
ciphertext.

In the past few years, there has been significant progress in attribute-based encryption
in terms of efficiency, security guarantees, and diversifying security assumptions [GPSW06,
Wat09, LW10, LOS+10, CHKP12, ABB10a, OT10]. On the other hand, little progress
has been made in terms of supporting larger classes of predicates. The state of the art is
Boolean formulas [GPSW06, LOS+10, OT10], which is a subclass of log-space computations.
Constructing a secure attribute-based encryption for all polynomial-time predicates was
posed as a central challenge by Boneh, Sahai and Waters [BSW11]. We resolve this problem
affirmatively in this chapter.
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3.1 Our Contributions, Techniques and Related Work

We construct attribute-based encryption schemes for circuits of every a-priori bounded depth,
based on the learning with errors (LWE) assumption. In the course of our construction, we
present a new framework for constructing attribute-based encryption schemes, based on a
primitive that we call “two-to-one recoding” (TOR). Our methodology departs significantly
from the current line of work on attribute-based encryption [GPSW06, LOS+10] and instead,
builds upon the connection to garbled circuits developed in the context of bounded collusions
[SS10b, GVW12]. Along the way, we make the first substantial progress towards the 25-
year-old open problem of constructing reusable garbled circuits. In particular, we obtain
the first construction of reusable garbled circuits that satisfies authenticity, but not privacy.
In a follow-up work, Goldwasser et al. [GKP+13b] completely resolved this open problem
by constructing reusable garbled circuits with authenticity and privacy; moreover, their
construction relies crucially on our ABE scheme as an intermediate building block.

More specifically, for every class of predicate circuits with depth bounded by a polynomial
function 𝑑 = 𝑑(𝜆) (where 𝜆 is the security parameter), we construct an ABE scheme that
supports this class of circuits, under the learning with errors (LWE) assumption. Informally,
the (decisional) LWE problem [Reg09] asks to distinguish between “noisy” random linear
combinations of 𝑛 numbers s = (𝑠1, . . . , 𝑠𝑛) ∈ Z𝑛

𝑞 from uniformly random numbers over Z𝑞.
Regev [Reg09] showed that solving the LWE problem on the average is as hard as

(quantumly) solving several notoriously difficult lattice problems in the worst case. Since
then, the LWE assumption has become a central fixture in cryptography. We now have a
large body of work building cryptographic schemes under the LWE assumption, culminating
in the construction of a fully homomorphic encryption scheme [BV11b].

The key parameter that determines the hardness of LWE is the ratio between the modulus
𝑞 and the maximum absolute value of the noise 𝐵; as such, we refer to 𝑞/𝐵 as the hardness
factor of LWE. The problem becomes easier as this ratio grows, but is believed to be hard
for 2𝑛𝜖-time algorithms when 𝑞/𝐵 = 2𝑂(𝑛𝜖), where 0 < 𝜖 < 1/2. Our results will hold as long
as the latter holds for some constant 𝜖.

In particular, our main result constructing selectively secure attribute based encryption
(where the adversary must commit to the challenge public attribute vector 𝑎 before seeing
the public parameters) can be summarized as follows:

Theorem 3.1.1 (informal). Assume that there is a constant 0 < 𝜖 < 1 for which the LWE
problem is hard for a exp(𝑛𝜖) factor in dimension 𝑛, for all large enough 𝑛. Then, for any
polynomial 𝑑, there is a selectively secure attribute encryption scheme for general circuits of
depth 𝑑.

Moreover, our scheme has succinct ciphertexts, in the sense that the ciphertext size
depends polynomially on the depth 𝑑 and the length ℓ of the attribute vector 𝑎, but not on
the size of the circuits in the class. The construction as stated achieves the weaker notion of
selective security, but we can easily obtain a fully secure scheme following [BB04] (but using
sub-exponential hardness in a crucial way):
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Corollary 3.1.2. Assume that there is a constant 0 < 𝜖 < 1/2 such that the LWE problem
with a factor of exp(𝑛𝜖) is hard in dimension 𝑛 for exp(𝑛𝜖)-time algorithms. Then, for any
polynomial 𝑑, there is a fully secure attribute-based encryption scheme for general circuits of
depth 𝑑.

We also obtain a new ABE scheme for branching programs (which correspond to the
complexity class LOGSPACE) under the weaker quasi-polynomial hardness of LWE:

Theorem 3.1.3 (informal). There exist attribute-based encryption schemes for the class of
branching programs under either (1) the hardness of the LWE problem with an 𝑛𝜔(1) factor,
or (2) the bilinear decisional Diffie-Hellman assumption.

Here, there is no a-prori bound on the size or the depth of the branching program.
In addition, we achieve succinct ciphertexts of size 𝑂(ℓ) where ℓ is the number of bits in
the index. Prior to this work, under the same 𝑛𝜔(1)-hardness assumption of LWE that we
use, the state of the art constructions were limited to IBE and inner product encryption
[CHKP12, ABB10a, AFV11] (that is, special cases of branching programs). However, under
the same bilinear maps assumption, Goyal et al. [GPSW06] achieved a similar result to ours
using secret sharing for general access structures. Our bilinear construction is a different way
to achieve the same result, but exploits a combinatorial property of branching programs. The
construction is inspired by a pairings-based scheme for regular languages in [Wat12].

We now move on to provide a technical roadmap of our construction: first, we define a
new primitive that we call a two-to-one recoding (TOR) scheme; we then show how TOR
gives us an attribute-based encryption scheme for circuits, and how to construct a TOR
scheme from the LWE assumption.

3.1.1 New Framework: TOR

A Two-to-One Recoding (TOR) scheme is a family of (probabilistic) functions {Encode(pk, ·)}
indexed by pk, together with a “two-to-one” recoding mechanism. The basic computational
security guarantee for Encode(pk, ·) is that of (correlated) pseudorandomness [RS10]:
Encode(pk, 𝑠) should be pseudorandom given Encode(pk𝑖, 𝑠) for polynomially many pk𝑖’s,
where 𝑠 is a uniformly random “seed”.

The recoding mechanism guarantees that given any triple of public keys (pk0, pk1, pktgt),
there is a recoding key rk that allows us to perform the transformation

(Encode(pk0, 𝑠),Encode(pk1, 𝑠)) ↦→ Encode(pktgt, 𝑠).

Such a recoding key rk can be generated using either of the two secret keys sk0 or
sk1. Furthermore, the recoding mechanism must satisfy a natural simulation requirement:
namely, we can generate rk given just pk0, pk1 (and neither of the two secret keys), if we are
allowed to “program” pktgt. That is, there are three ways of generating the pair (pktgt, rk)
that are (statistically) indistinguishable: (1) given pktgt, generate rk using the secret key sk0;
(2) given pktgt, generate rk using the secret key sk1; and (3) generate rk without either secret
key, by “programming” the output public key pktgt.
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This requirement demonstrates the intuitive guarantee that we expect from a two-to-one
recoding mechanism: namely, the recoding key is “useless” given only one encoding, but
not both encodings. For example, it is easy to see that given Encode(pk0, 𝑠) and rk (but not
Encode(pk1, 𝑠)), the output Encode(pktgt, 𝑠) is pseudorandom. Indeed, this is because rk could
as well have been “simulated” using sk1, in which case it is of no help in the distinguishing
task.

The simulation requirement also rules out the trivial construction from trapdoor functions
where rk is a trapdoor for inverting Encode(pk0, ·) or Encode(pk1, ·).

From TOR to Garbled Circuits. We start from the observation that our TOR primitive
implies a form of reusable garbled circuits with no input or circuit privacy, but instead, with
a form of authenticity guarantee. As we will see, this leads directly into our attribute-based
encryption scheme.

Consider a two-input boolean gate with input wires 𝑢, 𝑣 and output wire 𝑤, computing a
function 𝐺 : {0, 1}×{0, 1} → {0, 1}. In Yao’s garbled circuit construction, we associate each
wire with a pair of strings (called “labels”). In addition, there is an associated translation
table comprising of four values 𝑣𝑏,𝑐 for 𝑏, 𝑐 ∈ {0, 1}, where 𝑣𝑏,𝑐 allows us to perform the
transformation:

𝐿𝑢,𝑏, 𝐿𝑣,𝑐 ↦→ 𝐿𝑤,𝐺(𝑏,𝑐)

The garbled circuits construction guarantees that given the translation table and labels 𝐿𝑢,𝑏*

and 𝐿𝑣,𝑐* for specific input bits 𝑏* and 𝑐*, we can obtain 𝐿𝑤,𝐺(𝑏*,𝑐*); however, the other label
at the output, namely 𝐿𝑤,1−𝐺(𝑏*,𝑐*) remains hidden.1

In our setting, we replace labels with public keys, so that each wire is associated with
a pair of public keys. As before, we also provide a translation table comprising four values
rk𝑏,𝑐 where the recoding key rk𝑏,𝑐 allows us to perform the transformation

Encode(pk𝑢,𝑏, 𝑠),Encode(pk𝑣,𝑐, 𝑠) ↦→ Encode(pk𝑤,𝐺(𝑏,𝑐), 𝑠)

The security properties of the TOR scheme then give us the following guarantee: Given the
translation table and encodings of 𝑠 corresponding to 𝑏*, 𝑐*, we clearly compute the encoding
of 𝑠 corresponding to 𝐺(𝑏*, 𝑐*). However, the encoding corresponding to 1−𝐺(𝑏*, 𝑐*) remains
pseudorandom.

Moreover, crucially, the translation table is independent of 𝑠, so we can now “reuse” the
translation table by providing fresh encodings with different choices of 𝑠. In a sentence,
replacing strings by functions gives us the power of reusability.

In the garbled circuits construction, the four entries of the table are permuted and thus,
one can perform the translation even without knowing what the input bits 𝑏* and 𝑐* are.
This is possible because there is an efficient way to verify when the “correct” translation

1In the standard instantiation of Yao’s garbled circuits, each label is a secret key of a semantically secure
encryption. Moreover, each translation value 𝑣𝑏,𝑐 is an encryption of key 𝐿𝑤,𝐺(𝑏,𝑐) under a pair of keys
𝐿𝑢,𝑏, 𝐿𝑣,𝑐. Given two keys 𝐿𝑢,𝑏* , 𝐿𝑣,𝑐* corresponding to input bits 𝑏*, 𝑐*, it is possible to decrypt and learn
key 𝐿𝑤,𝐺(𝑏,𝑐) in clear, whereas the key 𝐿𝑤,1−𝐺(𝑏,𝑐) remains hidden.
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key is being used. In contrast, in the reusable construction above, one has to know exactly
which of the recoding keys to use. This is part of the reason why we are unable to provide
circuit or input privacy, but instead, only guarantee authenticity, namely that an adversary
can obtain only one of the two possible encodings at the output wire.

This construction forms the cornerstone of the subsequent work of Goldwasser, Kalai,
Popa, Vaikuntanathan and Zeldovich [GKP+13b] who construct reusable garbled circuits
with input and circuit privacy, by additionally leveraging the power of fully homomorphic
encryption [Gen09, BV11b].

From TOR to Attribute-Based Encryption. How is all this related to attribute-based
encryption? In our attribute-based encryption scheme for circuits, the encodings of 𝑠 are
provided in the ciphertext, and the translation tables are provided in the secret key. More
precisely, each wire is associated with two TOR public keys, and the encryption of a message
𝑚 under an index 𝑎 is obtained by computing Encode(pk𝑖,𝑎𝑖 , 𝑠) for every input wire 𝑖. The
output encoding Encode(pkout, 𝑠) is then used to mask the message. We obtain the secret
key corresponding to a circuit 𝐶 by “stitching” multiple translation tables together, where
the public keys for the input and output wires are provided in the public parameters, and
we pick fresh public keys for the internal wires during key generation. In a nutshell, this
gives us the guarantee that given a secret key sk𝐶 and an encryption Enc(𝑎,𝑚) such that
𝐶(𝑎) = 1, we can compute Encode(pkout, 𝑠) and thus recover the message. On the other
hand, this value looks pseudorandom if 𝐶(𝑎) = 0.

In our outline of reusable garbled circuits with authenticity, we wanted to reuse the
garbled circuit 𝐺(𝐶) across multiple encryptions with indices 𝑎1, 𝑎2, . . . on which 𝐶 always
evaluates to 0. In attribute-based encryption, we also want reusability across multiple
circuits 𝐶1, 𝐶2, . . . all of which evaluate to 0 on a fixed index 𝑎 (in addition to multiple
indices). Fortunately, the strong security properties of the TOR primitive provide us with
this guarantee.

To obtain attribute-based encryption for branching programs, we are able to support a
different notion of translation tables, which we can realize using a slightly weaker notion of
TOR. In branching programs, the transition function depends on an input variable and the
current state. The fact that one of these two values is always an input variable makes things
simpler; in circuits, both of the input values to a gate could be internal wires.

TOR from LWE. We show how to instantiate TOR from LWE, building upon previous
lattice-based IBE techniques in [GPV08, CHKP12, ABB10a]. The public key is given by a
matrix A ∈ Z𝑛×𝑚

𝑞 , and
Encode(A, s) = A𝑇 s + e

where s ∈ Z𝑛
𝑞 , e ∈ Z𝑚

𝑞 is an error vector, and A𝑇 denotes the transpose of the matrix
A. (Correlated) pseudorandomness follows directly from the LWE assumption. Given
A0,A1,Atgt ∈ Z𝑛×𝑚

𝑞 , the recoding key rk is given by a low-norm matrix R ∈ Z2𝑚×𝑚
𝑞 such

that
[ A0 ‖ A1 ] R = Atgt
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Note that
R𝑇

[︂
A𝑇

0 s + e0
A𝑇

1 s + e1

]︂
≈ A𝑇

tgts

which gives us the recoding mechanism. There are three ways of generating the public
key Atgt together with the recoding key R: (1) using the trapdoor for A0, (2) using the
trapdoor for A1, or (3) first generating R and then “programming” Atgt := [A0||A1] R.
These three ways are statistically indistinguishable by the “bonsai trick” of [CHKP12]. In
fact, our recoding mechanism is very similar to the lattice delegation mechanism introduced
in [ABB10b], which also uses random low norm matrices to move from one lattice to another.

The multiplicative mechanism for recoding means that the noise grows exponentially
with the number of sequential recodings. This, in turn, limits the depth of the circuits
we can handle. In particular, the noise grows by a multiplicative poly(𝑛) factor on each
recoding, which means that after depth 𝑑, it becomes 𝑛𝑂(𝑑). Since 𝑛𝑂(𝑑) < 𝑞/4 < 2𝑛𝜖 , we can
handle circuits of depth 𝑂̃(𝑛𝜖) (here, the first inequality is for correctness and the second for
security). Viewed differently, setting the LWE dimension 𝑛 = 𝑑1/𝜖 lets us handle circuits of
maximum depth 𝑑 = 𝑑(ℓ).

Our weak TOR for branching programs uses an additive mechanism, namely the recoding
key is given by a low-norm matrix R ∈ Z𝑚×𝑚

𝑞 such that A0R = Atgt − A1. Note that
R𝑇 (A𝑇

0 s + e0) + (A𝑇
1 s + e1) ≈ A𝑇

tgts which gives us our recoding mechanism. Since in our
branching program construction, A𝑇

0 s + e0 will always be a fresh encoding provided in the
ciphertext, the noise accumulation is additive rather than multiplicative.

3.1.2 Applications

Let us now explain the application of our result to the problem of publicly verifiable
delegation of computation without input privacy.

A verifiable delegation scheme allows a computationally weak client to delegate expensive
computations to the cloud, with the assurance that a malicious cloud cannot convince the
client to accept an incorrect computation [Mic00, GKN08, GGP10a, CKP10, AIK10]. Recent
work of Parno, Raykova and Vaikuntanathan [PRV12] showed that any attribute-based
encryption scheme for a class of circuits with encryption time at most linear in the length
of the index immediately yields a two-message delegation scheme for the class in the pre-
processing model. Namely, there is an initial pre-processing phase which fixes the circuit 𝐶
the client wishes to compute, produces a circuit key and sends it to the server. Afterwards,
to delegate computation on an input 𝑥, the client only needs to send a single message.
Moreover, the ensuing delegation scheme satisfies public delegatability, namely anyone can
delegate computations to the cloud; as well as public verifiability, namely anyone can check
the cloud’s work (given a “verification” key published by the client). The previous delegation
schemes that satisfy both these properties (secure in the standard model) supported the class
𝑁𝐶1 [PRV12, GPSW06, LW12]. Our attribute-based encryption schemes for circuits gives
us a verifiable delegation scheme for all circuits, where the computation time of the client
in the online phase is polynomial in the length of its input and the depth of the circuit, but
is otherwise independent of the circuit size. We note that this scheme does not guarantee
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privacy of the input. Building on this work, Goldwasser et al. [GKP+13b] show how to
achieve a publicly verifiable delegation scheme with input privacy.

3.1.3 Related Work

Prior to this work, the state-of-art for lattice-based predicate encryption was threshold and
inner product predicates [ABV+12, AFV11]; realizing Boolean formula was itself an open
problem. A different line of work considers definitional issues in the more general realm
of functional encryption [BSW11, O’N10], for which general feasibility results are known
for the restricted setting of a-priori bounded collusions developed from classical “one-time”
garbled circuits [SS10a, GVW12] (the ciphertext size grows with both the circuit size and the
collusion bound). Our methodology takes a fresh perspective on how to achieve reusability
of garbled circuits with respect to authenticity. Our primitive (TOR) can be thought of as
a generalization of the notion of proxy re-encryption [BBS98, AFGH06, HRSV11] which can
be thought of as a one-to-one re-encryption mechanism.

Independent work. Boyen [Boy13b] gave a construction of an ABE scheme for Boolean
formulas based on LWE; our result for LWE-based branching program subsumes the result
since Boolean formulas are a subclass of branching programs. Garg, Gentry, Halevi, Sahai
and Waters [GGH+13c] gave a construction of attribute-based encryption for general circuits
under a DBDH-like assumption in multi-linear groups; the construction extends to so-called
graded encodings, for which we have candidates under non-standard assumptions in ideal
lattices [GGH13a, CLT13]. The public parameters in the construction also grow with the
depth of the circuit.

Subsequent Work. Our attribute-based encryption scheme has been used as the crucial
component in the subsequent work of [GKP+13b] to construct a (private index) functional
encryption scheme with succinct ciphertexts. They also show a number of applications of
their construction, including reusable garbled circuits with input and circuit privacy. Also
subsequently, Boneh et al. [BGG+14] gave asymptotic improvements on the sizes of secret
keys and ciphertexts in two different constructions respectively. Their main construction
is built from a new fully key-homomorphic encryption reduces the size of the secret key
for a predicate 𝑃 from |𝑃 | × poly(𝜆, 𝑑), shown in this work, to |𝑃 | + poly(𝜆, 𝑑) where
𝜆 is the security parameter and 𝑑 is the circuit depth. Moreover, their construction
supports arithmetic circuits and key delegation. Our Chapter 4 is also a subsequent work
of [GKP+13b] and [BGG+14]. Pandey et al. [PRW14] showed how to instantiate our two-
to-one recoding scheme from multi-linear maps. Goldwasser et al. [GKP+13a] construct
ABE and other variants of functional encryption for Turing Machines using very strong
intractability assumptions.
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3.1.4 Chapter Organization

We present preliminaries in Section 3.2. We present our TOR framework and its instantiation
in Sections 3.3 and 3.4. We present our ABE scheme in Section 3.5. We present the scheme for
branching programs in Section 3.6. In Section 3.7, we present some extensions for our basic
construction for circuits. In Section 3.8, we summarize and present some open problems.

3.2 Preliminaries

3.2.1 Attribute-Based Encryption

We define attribute-based encryption (ABE), following [GPSW06]. An ABE scheme ABE
for a class of predicate circuits 𝒞 (namely, circuits with a single bit output) consists of four
PPT algorithms (Setup,Enc,KeyGen,Dec):

Setup(1𝜆, 1ℓ)→ (mpk,msk) : The setup algorithm gets as input the security parameter 𝜆,
the length ℓ of the index, and outputs the master public key (mpk), and the master
key msk.

Enc(mpk, 𝑎,𝑚)→ ct𝑎 : The encryption algorithm gets as input mpk, an index 𝑎 ∈ {0, 1}ℓ
and a message 𝑚 ∈ℳ. It outputs a ciphertext ct𝑎. Note that 𝑎 is public given ct𝑎.

KeyGen(msk, 𝐶)→ sk𝐶 : The key generation algorithm gets as input msk and a predicate
specified by 𝐶 ∈ 𝒞. It outputs a secret key sk𝐶 (where 𝐶 is also public).

Dec(sk𝐶 , ct𝑎)→ 𝑚 : The decryption algorithm gets as input sk𝐶 and ct𝑎, and outputs either
⊥ or a message 𝑚 ∈ℳ.

Correctness. We define and realize perfect correctness of the ABE scheme. Namely, for
all (𝑎, 𝐶) such that 𝐶(𝑎) = 1, all 𝑚 ∈ℳ and ct𝑎 ← Enc(mpk, 𝑎,𝑚), Dec(sk𝐶 , ct𝑎) = 𝑚.

Security Definition For a stateful adversary 𝒜 (that can maintain a global state
information throughout the execution of the experiment), we define the advantage function
Advpe𝒜 (𝜆) to be

Pr

⎡⎢⎢⎢⎢⎢⎢⎣𝑏 = 𝑏′ :

𝑎← 𝒜(1𝜆, 1ℓ);
(mpk,msk)← Setup(1𝜆, 1ℓ);
(𝑚0,𝑚1)← 𝒜KeyGen(msk,·)(mpk), |𝑚0| = |𝑚1|;
𝑏

$← {0, 1};
ct𝑎 ← Enc(mpk, 𝑎,𝑚𝑏);
𝑏′ ← 𝒜KeyGen(msk,·)(ct𝑎)

⎤⎥⎥⎥⎥⎥⎥⎦−
1

2

with the restriction that all queries 𝐶 that 𝒜 makes to KeyGen(msk, ·) satisfies 𝐶(𝑎) = 0
(that is, sk𝐶 does not decrypt ct𝑎). An attribute-based encryption scheme is selectively secure
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if for all PPT adversaries 𝒜, the advantage Advpe𝒜 (𝜆) is a negligible function in 𝜆. We call an
attribute-based encryption scheme fully secure if the adversary 𝒜 is allowed to choose the
challenge index 𝑎 after seeing secret keys, namely, along with choosing (𝑚0,𝑚1).

3.3 Two-to-One Recoding Schemes
An overview of TOR is provided in Section 3.1.1. Below, we first informally point out
some properties of the encryption/decryption algorithms that are a part of TOR. Then, in
Section 3.3.1 we provide a formal definition of all TOR algorithms and properties.

Symmetric encryption. In our construction, we will use Encode(pk, 𝑠) as a one-time key
for a symmetric-key encryption scheme (E,D). If Encode is deterministic, then we could
simply use a one-time pad. However, since Encode is probabilistic, the one-time pad will not
guarantee correctness. Instead, we require (E,D) to satisfy a stronger correctness guarantee,
namely for all messages 𝑚 and for all 𝜓, 𝜓′ in the support of Encode(pk, 𝑠), D(𝜓′,E(𝜓,𝑚)) =
𝑚.

Allowing degradation. With each recoding operation, the “quality” of encoding poten-
tially degrades. In order to formalize this, we allow the initial global public parameters to
depend on 𝑑max, an a-prior upper bound on the number of nested recoding operations. We
then require that given any encodings 𝜓 and 𝜓′ that are a result of at most 𝑑max nested
recodings, D(𝜓′,E(𝜓,𝑚)) = 𝑚. We stress that we allow 𝑑max to be super-polynomial, and in
fact, provide such instantiations for a relaxed notion of TOR.

3.3.1 Definition of TOR

Formally, a TOR scheme over the input space 𝒮 = {𝒮𝜆} and outputs space𝒦 = {𝒦𝜆} consists
of six polynomial-time algorithms (Setup,KeyGen,Encode,ReKeyGen, SimReKeyGen,Recode)
and a symmetric-key encryption scheme (E,D) with the following properties:

∙ Setup(1𝜆, 𝑑max) is a probabilistic algorithm that takes as input the security parameter
𝜆 and an upper bound 𝑑max on the number of nested recoding operations (written in
binary), outputs “global” public parameters pp.

∙ KeyGen(pp) is a probabilistic algorithm that outputs a public/secret key pair (pk, sk).

∙ Encode(pk, 𝑠) is a probabilistic algorithm that takes pk and an input 𝑠 ∈ 𝒮, and outputs
an encoding 𝜓.

In addition, there is a recoding mechanism together with two ways to generate recoding keys:
given one of the two secret keys, or by programming the output public key.

∙ ReKeyGen(pk0, pk1, sk0, pktgt) is a probabilistic algorithm that takes a key pair (pk0, sk0),
another public key pk1, a “target” public key pktgt, and outputs a recoding key rk.
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∙ SimReKeyGen(pk0, pk1) is a probabilistic algorithm that takes two public keys pk0, pk1
and outputs a recoding key rk together with a “target” public key pktgt.

∙ Recode(rk, 𝜓0, 𝜓1) is a deterministic algorithm that takes the recoding key rk, two
encodings 𝜓0 and 𝜓1, and outputs an encoding 𝜓tgt.

Remark 3.3.1. For our instantiation from lattices, we can in fact invert Encode(pk, 𝑠) to
recover 𝑠 using the corresponding sk. However, we will not require this property in our generic
constructions from TOR. Indeed, realizing this property over bilinear groups would be hard,
since 𝑠 is typically encoded in the exponent.

Correctness. Correctness of a TOR scheme requires two things. First, for sufficiently
large 𝜆, for every pk and 𝑠 ∈ 𝒮, there exists a family of sets Ψpk,𝑠,𝑗, 𝑗 = 0, 1, . . . , 𝑑max:

∙ Pr[Encode(pk, 𝑠) ∈ Ψpk,𝑠,0] = 1, where the probability is taken over the coin tosses of
Encode;

∙ Ψpk,𝑠,0 ⊆ Ψpk,𝑠,1 ⊆ · · · ⊆ Ψpk,𝑠,𝑑max .

∙ for all 𝜓, 𝜓′ ∈ Ψpk,𝑠,𝑑max and all 𝑚 ∈ℳ, D(𝜓′,E(𝜓,𝑚)) = 𝑚.

Note that these properties hold trivially if Encode is deterministic and (E,D) is the one-
time pad. Secondly, the correctness of recoding requires that for any triple of key pairs
(pk0, sk0), (pk1, sk1), (pktgt, sktgt), and any encodings 𝜓0 ∈ Ψpk0,𝑠,𝑗0 and 𝜓1 ∈ Ψpk1,𝑠,𝑗1 ,

Recode(rk, 𝜓0, 𝜓1) ∈ Ψpktgt,𝑠,max(𝑗0,𝑗1)+1

Statistical Security Properties. Note that we have three ways of sampling recoding keys:
using ReKeyGen along with one of two secret keys sk0 or sk1; using SimReKeyGen while
programming pktgt. We require that for all 𝜆, all three ways lead to the same distribution of
recoding keys, up to some statistical error.

Key Indistinguishability : Let (pk𝑏, sk𝑏) ← KeyGen(pp) for 𝑏 = 0, 1 and (pktgt, sktgt) ←
KeyGen(pp).

Then, for all 𝜆, the following two ensembles must be statistically indistinguishable:[︁
Aux,ReKeyGen(pk0, pk1, sk0 , pktgt)

]︁
𝑠
≈[︁

Aux,ReKeyGen(pk1, pk0, sk1 , pktgt)
]︁

where Aux = ((pk0, sk0), (pk1, sk1), (pktgt, sktgt)). Informally, this says that sampling
recoding keys using sk0 or sk1 yields the same distribution.
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Recoding Simulation : Let (pk𝑏, sk𝑏) ← KeyGen(pp) for 𝑏 = 0, 1. Then, for all 𝜆,
the following two ways of sampling the tuple

[︀
(pk0, sk0), (pk1, sk1), pktgt, rk

]︀
must be

statistically indistinguishable:[︁
(pk0, sk0), (pk1, sk1), pktgt, rk : (pktgt, sktgt)← KeyGen(pp); rk← ReKeyGen(pk0, pk1, sk0, pktgt)

]︁
𝑠
≈[︁

(pk0, sk0), (pk1, sk1), pktgt, rk : (pktgt, rk)← SimReKeyGen(pk0, pk1)
]︁

In addition, we require one-time semantic security for (E,D):

One-time Semantic Security : For all 𝑚0,𝑚1 ∈ ℳ and all 𝜆, the following two
distributions must be statistically indistinguishable:[︁

E(𝜓,𝑚0) : 𝜓
$← 𝒦

]︁
𝑠
≈

[︁
E(𝜓,𝑚1) : 𝜓

$← 𝒦
]︁

For all three properties, computational indistinguishability is sufficient for our applications,
but we will achieve the stronger statistical indistinguishability in our instantiations.

Computational Security Property. We require that for all 𝜆, given the encoding of a random
𝑠 on ℓ = poly(𝜆) keys, the evaluation at a fresh key is pseudorandom.

Correlated Pseudorandomness : For every polynomial ℓ = ℓ(𝜆), let (pk𝑖, sk𝑖) ←
KeyGen(pp) for 𝑖 ∈ [ℓ + 1]. Let 𝑠 $← 𝒮, and let 𝜓𝑖 ← Encode(pk𝑖, 𝑠) for 𝑖 ∈ [ℓ + 1].
Then, the following two ensembles must be computationally indistinguishable:[︁

(pk𝑖, 𝜓𝑖)𝑖∈[ℓ], pkℓ+1, 𝜓ℓ+1

]︁
𝑐
≈[︁

(pk𝑖, 𝜓𝑖)𝑖∈[ℓ], pkℓ+1, 𝜓 : 𝜓
$← 𝒦

]︁
That is, we define the advantage function Advcp𝒜 (𝜆) to be:

Pr

⎡⎢⎢⎢⎢⎢⎢⎣𝑏 = 𝑏′ :

pp← Setup(1𝜆); 𝑠← 𝒮;
(pk𝑖, sk𝑖)← KeyGen(pp),
𝜓𝑖 ← Encode(pk𝑖, 𝑠), 𝑖 = 1, . . . , ℓ;
𝜓′0 ← Encode(pkℓ+1, 𝑠);

𝑏
$← {0, 1};𝜓′1

$← 𝒦
𝑏′ ← 𝒜(pk1, . . . , pkℓ+1, 𝜓1, . . . , 𝜓ℓ, 𝜓

′
𝑏)

⎤⎥⎥⎥⎥⎥⎥⎦−
1

2

and we require that for all PPT 𝒜, the advantage function Advcp𝒜 (𝜆) is a negligible function
in 𝜆.
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3.3.2 Simple Applications of TOR

In this section, we provide high-level sketches of how to use TOR to construct an analogue
of Yao’s garbled circuits (without privacy) and Identity-Based Encryption (IBE).

First example. We revisit the example from Section 3.1.1. Consider a two-input boolean
gate 𝑔 with input wires 𝑢, 𝑣 and output wire 𝑤, computing a function 𝐺 : {0, 1} × {0, 1} →
{0, 1}. Analogous to Yao’s garbled circuit, we provide a translation table Γ comprising four
values

Γ := ( rk𝑏,𝑐 : 𝑏, 𝑐 ∈ {0, 1} )

where rk𝑏,𝑐 allows us to perform the transformation

Encode(pk𝑢,𝑏, 𝑠),Encode(pk𝑣,𝑐, 𝑠) ↦→ Encode(pk𝑤,𝐺(𝑏,𝑐), 𝑠)

Now, fix 𝑏*, 𝑐* and 𝑑* := 𝐺(𝑏*, 𝑐*). Given an encoding of 𝑠 corresponding to 𝑏* and 𝑐*, we can
compute that for 𝑑* using the recoding key rk𝑏*,𝑐* ; in addition, we claim that the encoding
corresponding to 1−𝑑* remains pseudorandom. To prove this, it suffices to simulate Γ given
pk𝑢,𝑏* , pk𝑣,𝑐* , pk𝑤,1−𝑑* as follows:

∙ we sample (pk𝑤,𝑑* , rk𝑏*,𝑐*) using SimReKeyGen;

∙ we sample pk𝑢,1−𝑏* and pk𝑣,1−𝑐* along with the corresponding secret keys; using these
secret keys, we can sample the other three recoding keys rk1−𝑏*,𝑐* , rk𝑏*,1−𝑐* , rk1−𝑏*,1−𝑐* .

IBE from TOR. As a warm-up, we show how to build a selectively secure IBE for identity
space {0, 1}ℓ.

mpk :=

(︂
pk1,0 pk2,0 . . . pkℓ,0 pkstart
pk1,1 pk2,1 . . . pkℓ,1 pkout

)︂
The ciphertext for identity 𝑎 and message 𝑚 is given by:(︁

Encode(pk1,𝑎1 , 𝑠), . . . ,Encode(pkℓ,𝑎ℓ , 𝑠),Encode(pkstart, 𝑠),E(Encode(pkout, 𝑠),𝑚)
)︁

The secret key for identity 𝑎 is given by (rk1, . . . , rkℓ) where we first sample

(pk′1, sk
′
1), . . . , (pk

′
ℓ−1, sk

′
ℓ−1)← KeyGen(pp)

and then sample

rk1← ReKeyGen(pkstart, pk1,𝑎1 , skstart, pk
′
1)

rk2← ReKeyGen(pk′1, pk2,𝑎2 , sk
′
1, pk′2)

...
rkℓ← ReKeyGen(pk′ℓ−1, pkℓ,𝑎ℓ , sk

′
ℓ−1, pkout)
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To prove selective security, we need to generate secret keys for any 𝑎 ̸= 𝑎*, given
sk1,1−𝑎*1 , . . . , skℓ,1−𝑎*ℓ but not skstart or skout. We can achieve this as follows: pick an 𝑖 for
which 𝑎𝑖 ̸= 𝑎*𝑖 ;

∙ pick (rk1, pk
′
1), . . . , (rk𝑖−1, pk

′
𝑖−1) using SimReKeyGen;

∙ pick (pk′𝑖, sk
′
𝑖), . . . , (pk

′
ℓ−1, sk

′
ℓ−1) using KeyGen;

∙ pick rk𝑖, rk𝑖+1, . . . , rkℓ using ReKeyGen with secret keys sk1−𝑎*𝑖 , sk
′
𝑖, . . . , sk

′
ℓ−1 respectively.

We note that our IBE construction from TOR seems incomparable to existing IBE
constructions from lattices [CHKP12, ABB10a], as we follow more of a “sequential” binding
to the identity 𝑎.

3.4 TOR from LWE
In this section, we present an instantiation of TOR from LWE, building upon ideas previously
introduced in [GPV08, CHKP12, ABB10a].

Lemma 3.4.1. Assuming dLWE𝑛,𝑞,𝜒 there is a TOR scheme that is correct up to 𝑑max levels,
where 𝑛 = 𝑛(𝜆), 𝜒 = 𝐷Z,

√
𝑛, 𝑞 = 𝑛Θ(𝑑max), 𝑚 = 𝑂(𝑛 log 𝑞) and 𝑞 = 𝑛Θ(𝑑max).

∙ Setup(1𝜆, 𝑑max): The parameters 𝑛,𝑚, 𝜒, 𝑞, are given from the assumption. Set the
error bound 𝐵 = 𝐵(𝑛) = 𝑂(𝑛) and the Gaussian parameter 𝑠 = 𝑠(𝑛) = 𝑂(

√
𝑛 log 𝑞).

Output the global public parameters pp = (𝑛, 𝜒,𝐵, 𝑞,𝑚, 𝑠).

∙ KeyGen(pp): Run the trapdoor generation algorithm TrapSamp(1𝑛, 1𝑚, 𝑞) to obtain a
matrix A ∈ Z𝑛×𝑚

𝑞 together with the trapdoor matrix T ∈ Z𝑚×𝑚. Output pk := A and
sk := T.

∙ Encode(pk, s): Sample an error vector e← 𝜒𝑚 and output the encoding 𝜓 := A𝑇 s+e ∈
Z𝑚

𝑞 .

The recoding algorithms work as follows:

∙ ReKeyGen(pk0, pk1, sk𝑏, pktgt): Let pk0 = A0, pk1 = A1, sk𝑏 = T𝑏 and pktgt = Atgt.
Compute the matrix R ∈ Z2𝑚×𝑚 in the following way:

– Choose a discrete Gaussian matrix R1−𝑏 ← (𝐷Z,𝑠)
𝑚×𝑚. Namely, each entry of the

matrix is an independent sample from the discrete Gaussian distribution 𝐷Z,𝑠.

– Compute U := Atgt −A1−𝑏R1−𝑏 ∈ Z𝑛×𝑚
𝑞 .

– Compute the matrix R𝑏 by running the algorithm SamPre to compute a matrix
R𝑏 ∈ Z𝑚×𝑚 as follows:

R𝑏 ← SamPre(A𝑏,T𝑏,U)

39



Output

rktgt0,1 :=

[︂
R0

R1

]︂
∈ Z2𝑚×𝑚

(We remark that A𝑏R𝑏 = U = Atgt −A1−𝑏R1−𝑏, and thus, A0R0 + A1R1 = Atgt).

∙ SimReKeyGen(pk0, pk1): Let pk0 = A0 and pk1 = A1.

– Sample a matrix R ← (𝐷Z,𝑠)
2𝑚×𝑚 by sampling each entry from the discrete

Gaussian distribution 𝐷Z,𝑠.

– Define
Atgt := [A0 || A1] R ∈ Z𝑛×𝑚

𝑞

Output the pair (pktgt := Atgt, rk
tgt
0,1 := R).

∙ Recode(rktgt0,1,𝜓0,𝜓1): Let rktgt0,1 = R. Compute the recoded ciphertext

𝜓tgt = [𝜓𝑇
0 || 𝜓𝑇

1 ] R

We also need a one-time symmetric encryption scheme (E,D) which we will instantiate
as an error-tolerant version of the one-time pad with 𝒦 = Z𝑚

𝑞 ,ℳ = {0, 1}𝑚, as follows:

∙ E(𝜓,𝑚) takes as input a vector 𝜓 ∈ Z𝑚
𝑞 and a bit string 𝑚 ∈ ℳ𝑚 and outputs the

encryption
𝛾 := 𝜓 + ⌈𝑞/2⌉ 𝑚 (mod 𝑞)

∙ D(𝜓′,𝛾) takes as input a vector 𝜓′ = (𝜓′1, . . . , 𝜓
′
𝑚) ∈ Z𝑚

𝑞 , an encryption 𝛾 =
(𝛾1, . . . , 𝛾𝑛) ∈ Z𝑚

𝑞 and does the following. Define a function Round(𝑥) where 𝑥 ∈
[−(𝑞 − 1)/2, . . . , (𝑞 − 1)/2] as:

Round(𝑥) =

{︂
0 if |𝑥| < 𝑞/4
1 otherwise

The decryption algorithm outputs a vector𝑚 = (Round(𝛾1−𝜓′1), . . . ,Round(𝛾𝑛−𝜓′𝑛)).

The scheme is information-theoretically secure for a one-time use. As for correctness, we
will show that for every two 𝜓 and 𝜓′ that are “close”, D(𝜓′,E(𝜓,𝑚)) = 𝑚. More precisely,
call 𝜓 and 𝜓′ close if for every 𝑖 ∈ [𝑛], |𝜓𝑖 − 𝜓′𝑖| < 𝑞/4.

D(𝜓′,E(𝜓,𝑚)) =
[︀
Round(𝛾1 − 𝜓′1), . . . ,Round(𝛾𝑛 − 𝜓′𝑛)

]︀
=

[︀
Round(𝑚1⌈𝑞/2⌉+ 𝜓1 − 𝜓′1), . . . ,Round(𝑚𝑛⌈𝑞/2⌉+ 𝜓𝑛 − 𝜓′𝑛)

]︀
Observe that if |𝜓𝑖 − 𝜓′𝑖| < 𝑞/4, then Round(𝑚𝑖⌈𝑞/2⌉ + 𝜓𝑖 − 𝜓′𝑖) = 𝑚𝑖. This completes the
proof of correctness.
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3.4.1 Analysis

Correctness. We define the sets ΨA,s,𝑗 for pk := A ∈ Z𝑛×𝑚
𝑞 , s ∈ Z𝑛

𝑞 and 𝑗 ∈ [1 . . . 𝑑max] as
follows:

ΨA,s,𝑗 =
{︀
A𝑇 s + e : ||e||∞ ≤ 𝐵 · (2𝑠𝑚

√
𝑚)𝑗

}︀
Given this definition:

∙ Observe that when e← 𝜒𝑚, ||e||∞ ≤ 𝐵 by the definition of 𝜒 and 𝐵. Pr[Encode(A, s) ∈
ΨA,s,0] = 1.

∙ ΨA,s,0 ⊆ ΨA,s,1 ⊆ . . . ⊆ ΨA,s,𝑑max , by definition of the sets above.

∙ For any two encodings 𝜓 = A𝑇 s + e,𝜓′ = A𝑇 s + e′ ∈ ΨA,s,𝑑max ,

||𝜓 −𝜓′||∞ = ||e− e′||∞ ≤ 2 ·𝐵 · (2𝑠𝑚
√
𝑚)𝑑max < 𝑞/4,

which holds as long as 𝑛 · 𝑂(𝑛2 log 𝑞)𝑑max < 𝑞/4. Thus, 𝜓 and 𝜓′ are “close”, and by
the correctness property of the symmetric encryption scheme (E,D) described above,
D(𝜓′,E(𝜓,𝑚)) = 𝑚 for any 𝑚 ∈ {0, 1}𝑛.

∙ Consider two encodings𝜓0 ∈ ΨA0,s,𝑗0 and𝜓1 ∈ ΨA1,s,𝑗1 for any 𝑗0, 𝑗1 ∈ N, any A0,A1 ∈
Z𝑛×𝑚

𝑞 and s ∈ Z𝑛
𝑞 . Then, 𝜓0 = A𝑇

0 s + e0 and 𝜓1 := A𝑇
1 s + e1 where ||e0||∞ ≤

𝐵 · (2𝑠𝑚
√
𝑚)𝑗0 and ||e1||∞ ≤ 𝐵 · (2𝑠𝑚

√
𝑚)𝑗1 .

Then, the recoded ciphertext 𝜓tgt is computed as follows:

𝜓𝑇
tgt :=

[︀
𝜓𝑇

0 || 𝜓𝑇
1

]︀
Rtgt

0,1

=
[︀
s𝑇A0 + e𝑇0 || s𝑇A1 + e𝑇1

]︀
Rtgt

0,1

= s𝑇
[︀
A0 || A1

]︀
Rtgt

0,1 +
[︀
e𝑇0 || e𝑇1 ] Rtgt

0,1

= s𝑇Atgt + etgt

where the last equation is because Atgt =
[︀
A0 || A1

]︀
Rtgt

0,1 and we define etgt :=[︀
e𝑇0 || e𝑇1 ] Rtgt

0,1. Thus,

||etgt||∞ ≤ 𝑚 · ||Rtgt
0,1||∞ · (||e0||∞ + ||e1||∞)

≤ 𝑚 · 𝑠
√
𝑚 · (𝐵 · (2𝑠𝑚

√
𝑚)𝑗0 +𝐵 · (2𝑠𝑚

√
𝑚)𝑗1)

≤ 𝐵 · (2𝑠𝑚
√
𝑚)max(𝑗0,𝑗1)+1

exactly as required. Here, the second inequality is because ||Rtgt
0,1||∞ ≤ 𝑠

√
𝑚 by

Lemma 2.4.1. This finishes our proof of correctness.

Key Indistinguishability. Recall that in ReKeyGen, we are given samplings (R0,R1)
satisfying A0R0 + A1R1 = Atgt. In key indistinguishability we must argue that
the distributions produced by sampling using a trapdoor for A0 or that for A1 are
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indistinguishable. Indeed, this follows directly from the following statement in [CHKP12,
GPV08] (see also [CHKP12, Theorem 3.4]): for every (A0,T0), (A1,T1) generated by
TrapSamp(1𝑛, 1𝑚, 𝑞), every matrix Atgt ∈ Z𝑛×𝑚

𝑞 , and any 𝑠 = Ω(
√
𝑛 log 𝑞), the following

two experiments generate distributions with negl(𝑛) statistical distance:

∙ Sample R0 ← (𝐷Z𝑚,𝑠)
𝑚, compute U := Atgt − A0R0 ∈ Z𝑛×𝑚

𝑞 and R1 ←
SamPre(A1,T1,U, 𝑠). Output (A0,T0,A1,T1,Atgt,R0,R1).

∙ Sample R1 ← (𝐷Z𝑚,𝑠)
𝑚, compute U := Atgt − A1R1 ∈ Z𝑛×𝑚

𝑞 and R0 ←
SamPre(A0,T0,U, 𝑠). Output (A0,T0,A1,T1,Atgt,R0,R1).

Note that in both distributions, it clearly holds that A0R0 + A1R1 = A𝑡𝑔𝑡, as required.
The recoding simulation property follows readily from lemma 2.4.1, as is done in

[CHKP12]. In particular, given [(A0,T0), (A1,T1),Atgt, (R0,R1)], from lemma 2.4.1, it
follows that if we are given Atgt, then we may sample (R0,R1) using the trapdoor T0.
Alternatively, sampling (R0,R1) first and setting Atgt = A0R0 + A1R1 produces the same
distribution.

Correlated pseudorandomness directly from the decisional LWE assumption dLWE𝑛,(ℓ+1)·𝑚,𝑞,𝜒

where 𝑞 = 𝑛Θ(𝑑max). In particular, by the dLWE, given A1, . . . ,Aℓ+1, 𝜓1, . . . , 𝜓ℓ, 𝜓
*, no

adversary can distinguish between the cases when 𝜓* is a valid LWE sample under key
Aℓ+1 or a randomly chosen value from Z𝑚

𝑞 .

3.5 Attribute-Based Encryption for Circuits

In this section, we show how to construct attribute-based encryption for circuits from any
TOR scheme.2 Let TOR be the scheme consisting of algorithms (Setup,KeyGen,Encode) with
the “two-to-one” recoding mechanism (Recode,ReKeyGen, SimReKeyGen) with input space 𝒮.
For every 𝑑max, let 𝑑max-TOR denote a secure “two-to-one” recoding scheme that is correct
for 𝑑max recoding levels.

Theorem 3.5.1. For every ℓ and polynomial 𝑑max = 𝑑max(𝜆), let 𝒞ℓ,𝑑max denote a family
of polynomial-size circuits of depth at most 𝑑max that take ℓ bits of input. Assuming the
existence of a 𝑑max-TOR scheme, there exists a selectively secure attribute-based encryption
scheme 𝒜ℬℰ for 𝒞ℓ,𝑑max.

Combining Theorem 3.5.1 and Lemma 3.4.1, we obtain a selectively secure attribute-
based encryption scheme from LWE. Furthermore, invoking an argument from [BB04,
Theorem 7.1] and using subexponential hardness of LWE, we obtain a fully secure scheme:

Corollary 3.5.2. For all ℓ and polynomial 𝑑max = 𝑑max(ℓ), there exists a selectively secure
attribute-based encryption scheme 𝒜ℬℰ for any family of polynomial-size circuits with ℓ

2We point out that our construction and the proof of security generalizes the sample IBE construction
presented in Section 3.3.2.
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inputs and depth at most 𝑑max, assuming the hardness of dLWE𝑛,𝑞,𝜒 for sufficiently large
𝑛 = poly(𝜆, 𝑑max), 𝑞 = 𝑛𝑂(𝑑max) and some poly(𝑛)-bounded error distribution 𝜒.

Moreover, assuming 2𝑂(ℓ)-hardness of dLWE𝑛,𝑞,𝜒 for parameters 𝑛 = poly(𝜆, 𝑑max, ℓ), and
𝑞 and 𝜒 as above, the attribute-based encryption scheme 𝒜ℬℰ is fully secure.

The reader is referred to the text after the construction for further explanation of how
to choose the LWE parameters. It remains an intriguing open problem to construct fully
secure without complexity leveraging (whereas a generic transformation from selective to
fully secure functional encryption (more powerful primitive than ABE) is already known
[ABSV14]).

Observe that if we start with a TOR scheme that supports 𝑑max = ℓ𝜔(1), then
our construction immediately yields an attribute-based encryption scheme for arbitrary
polynomial-size circuit families (without any restriction on the depth). This can be achieved
if, for example, we had an LWE-based TOR scheme where 𝑞 grows polynomially instead of
exponentially in 𝑑max as in our LWE-based weak TOR.

We now prove Theorem 3.5.1.

Circuit Representation. Let 𝒞𝜆 be a collection of circuits each having ℓ = ℓ(𝜆) input
wires and one output wire. Define a collection 𝒞 = {𝒞𝜆}𝜆∈N. For each 𝐶 ∈ 𝒞𝜆, we index
the wires of 𝐶 in the following way. The input wires are indexed 1 to ℓ, the internal wires
have indices ℓ + 1, ℓ + 2, . . . , |𝐶| − 1 and the output wire has index |𝐶|, which also denotes
the size of the circuit. We assume that the circuit is composed of arbitrary two-to-one
gates. Each gate 𝑔 is indexed as a tuple (𝑢, 𝑣, 𝑤) where 𝑢 and 𝑣 are the incoming wire
indices, and 𝑤 > max{𝑢, 𝑣} is the outgoing wire index. The gate computes the function
𝑔𝑤 : {0, 1} × {0, 1} → {0, 1}. The “fan-out wires” in the circuit are given a single number.
That is, if the outgoing wire of a gate feeds into the input of multiple gates, then all these
wires are indexed the same. (See e.g. [BHR12, Fig 4].)

3.5.1 Construction from TOR

The ABE scheme 𝒜ℬℰ = (Setup,Enc,KeyGen,Dec) is defined as follows.

Setup(1𝜆, 1ℓ, 𝑑max) : For each of the ℓ input wires, generate two public/secret key pairs. Also,
generate an additional public/secret key pair:

(pk𝑖,𝑏, sk𝑖,𝑏)← KeyGen(pp) for 𝑖 ∈ [ℓ], 𝑏 ∈ {0, 1}
(pkout, skout)← KeyGen(pp)

Output

mpk :=

(︂
pk1,0 pk2,0 . . . pkℓ,0
pk1,1 pk2,1 . . . pkℓ,1 pkout

)︂
msk :=

(︂
sk1,0 sk2,0 . . . skℓ,0
sk1,1 sk2,1 . . . skℓ,1

)︂
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Enc(mpk, 𝑎,𝑚) : For 𝑎 ∈ {0, 1}ℓ, choose a uniformly random 𝑠
$← 𝒮 and encode it under the

public keys specified by the index bits:

𝜓𝑖 ← Encode(pk𝑖,𝑎𝑖 , 𝑠) for all 𝑖 ∈ [ℓ]

Encrypt the message 𝑚:
𝜏 ← E(Encode(pkout, 𝑠),𝑚)

Output the ciphertext

ct𝑎 :=
(︀
𝜓1, 𝜓2, . . . , 𝜓ℓ, 𝜏, 𝑎

)︀
KeyGen(msk, 𝐶) :

1. For every non-input wire 𝑤 = ℓ+ 1, . . . , |𝐶| of the circuit 𝐶, and every 𝑏 ∈ {0, 1},
generate public/secret key pairs:

(pk𝑤,𝑏, sk𝑤,𝑏)← KeyGen(pp) if 𝑤 < |𝐶| or 𝑏 = 0

and set pk|𝐶|,1 := pkout.

2. For the gate 𝑔 = (𝑢, 𝑣, 𝑤) with outgoing wire 𝑤, compute the four recoding keys
rk𝑤𝑏,𝑐 (for 𝑏, 𝑐 ∈ {0, 1}):

rk𝑤𝑏,𝑐 ← ReKeyGen
(︁
pk𝑢,𝑏, pk𝑣,𝑐, sk𝑢,𝑏, pk𝑤,𝑔𝑤(𝑏,𝑐)

)︁
Output the secret key which is a collection of 4(|𝐶| − ℓ) recoding keys

sk𝐶 :=
(︁
rk𝑤𝑏,𝑐 : 𝑤 ∈

[︀
ℓ+ 1, |𝐶|

]︀
, 𝑏, 𝑐 ∈ {0, 1}

)︁
Dec(sk𝐶 , ct𝑎) : For 𝑤 = ℓ + 1, . . . , |𝐶|, let 𝑔 = (𝑢, 𝑣, 𝑤) denote the gate with outgoing wire

𝑤. Suppose wires 𝑢 and 𝑣 carry the values 𝑏* and 𝑐* when 𝐶 evaluated on 𝑎, so that
wire 𝑤 carries the value 𝑑* := 𝑔𝑤(𝑏*, 𝑐*). Compute

𝜓𝑤,𝑑* ← Recode
(︁
rk𝑤𝑏*,𝑐* , 𝜓𝑢,𝑏* , 𝜓𝑣,𝑐*

)︁
If 𝐶(𝑎) = 1, then we would have computed 𝜓|𝐶|,1. Output the message

𝑚← D
(︀
𝜓|𝐶|,1, 𝜏

)︀
If 𝐶(𝑎) = 0, output ⊥.

LWE Parameters. Fix ℓ = ℓ(𝜆) and 𝑑max = 𝑑max(ℓ), and suppose the dLWE𝑛,𝑚,𝑞,𝜒

assumption holds for 𝑞 = 2𝑛𝜖 for some 0 < 𝜖 < 1. Then, in our LWE-based TOR, we
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will set:
𝑛 = Θ̃(𝑑1/𝜖max) and 𝑞 = 𝑛Θ(𝑑max)

By Corollary 3.5.2, we get security under 2𝑛𝜖-LWE.

3.5.2 Correctness

Lemma 3.5.3 (correctness). Let 𝒞 = {𝒞𝜆}𝜆∈N be family where each 𝒞𝜆 is a finite collection
of polynomial-size circuits each of depth at most 𝑑max. Let TOR be a correct “two-to-one”
recoding scheme for 𝑑max levels. Then, the construction presented above is a correct attribute-
based encryption scheme.

Proof. Fix a circuit 𝐶 of depth at most 𝑑max and an input 𝑎 such that 𝐶(𝑎) = 1. Informally,
we rely on recoding correctness for 𝑑max recodings to show that 𝑤 = 1, . . . , |𝐶|, we have

𝜓𝑤,𝑑* = Encode(pk𝑤,𝑑* , 𝑠),

where 𝑑* is the value carried by the wire 𝑤 and 𝜓𝑤,𝑑* is computed as in Dec. Formally, we
proceed via induction on 𝑤 to show that

𝜓𝑤,𝑑* ∈ Ψpk𝑤,𝑑* ,𝑠,𝑗.

where 𝑗 is the depth of wire 𝑤. The base case 𝑤 = 1, . . . , ℓ follows immediately from
correctness of Encode. For the inductive step, consider a wire 𝑤 at depth 𝑗 for some gate
𝑔 = (𝑢, 𝑣, 𝑤) where 𝑢, 𝑣 < 𝑤. By the induction hypothesis,

𝜓𝑢,𝑏* ∈ Ψpk𝑢,𝑏* ,𝑠,𝑗0 , 𝜓𝑢,𝑐* ∈ Ψpk𝑣,𝑐* ,𝑠,𝑗1

where 𝑗0, 𝑗1 < 𝑗 denote the depths of wires 𝑢 and 𝑣 respectively. It follows immediately from
the correctness of Recode that

𝜓𝑤,𝑑* ∈ Ψpk𝑤,𝑑* ,𝑠,max(𝑖0,𝑖1)+1 ⊆ Ψpk𝑤,𝑑* ,𝑠,𝑗

which completes the inductive proof. Since 𝐶(𝑎) = 1 and pk|𝐶|,1 = pkout, we have 𝜓|𝐶|,1 ∈
Ψpkout,𝑠,𝑑max . Finally, by the correctness of (E,D), D(𝜓|𝐶|,1, 𝜏) = 𝑚.

3.5.3 Security

Lemma 3.5.4 (selective security). For any adversary 𝒜 against selective security of the
attribute-based encryption scheme, there exist an adversary ℬ against correlated pseudoran-
domness of TOR whose running time is essentially the same as that of 𝒜, such that

Advpe𝒜 (𝜆) ≤ Advcpℬ (𝜆) + negl(𝜆)

where negl(𝜆) captures the statistical security terms in TOR.
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We begin by describing alternative algorithms, which would be useful later for construct-
ing the adversary ℬ for the correlated pseudorandomness security game.

Alternative algorithms. Fix the selective challenge 𝑎. We get from the “outside”
the challenge pp, (pk𝑖, 𝜓𝑖)𝑖∈[ℓ+1] for correlated pseudorandomness, The main challenge is to
design an alternative algorithm KeyGen* for answering secret key queries without knowing
sk1,𝑎1 , . . . , skℓ,𝑎ℓ or skout. The algorithm KeyGen* will maintain the following invariant: on
input 𝐶 with 𝐶(𝑎) = 0,

∙ for every non-output wire 𝑤 = 1, . . . , |𝐶|−1 carrying the value 𝑏*, we will know sk𝑤,1−𝑏*

but not sk𝑤,𝑏* .

Moreover, we do not know sk|𝐶|,0 or sk|𝐶|,1 = skout.

Setup*(𝑎, 1𝜆, 1ℓ, 𝑑max) : Let

(pk𝑖,1−𝑎𝑖 , sk𝑖,1−𝑎𝑖) ← KeyGen(pp) for 𝑖 ∈ [ℓ]

pkout := pkℓ+1

pk𝑖,𝑎𝑖 := pk𝑖 for 𝑖 ∈ [ℓ]

Output mpk =

(︂
pk1,0 pk2,0 . . . pkℓ,0
pk1,1 pk2,1 . . . pkℓ,1 pkout

)︂
Enc*(mpk, 𝑎,𝑚) : Set 𝜏 ← E(𝜓ℓ+1,𝑚) and output the ciphertext

ct𝑎 =
(︀
𝜓1, 𝜓2, . . . , 𝜓ℓ, 𝜏, 𝑎

)︀
where 𝜓1, . . . , 𝜓ℓ+1 are provided in the challenge.

KeyGen*(𝑎,msk, 𝐶) : where 𝐶(𝑎) = 0,

1. For each internal wire 𝑤 ∈ [ℓ + 1, |𝐶| − 1] of the circuit 𝐶 carrying the value 𝑏*
when evaluating 𝐶 on input 𝑎, generate public/secret key pairs:

(pk𝑤,1−𝑏* , sk𝑤,1−𝑏*)← KeyGen(pp)

We will generate pk𝑤,𝑏* using SimReKeyGen as described next.

2. For 𝑤 = ℓ+1, . . . , |𝐶|, let 𝑔 = (𝑢, 𝑣, 𝑤) denote the gate for which 𝑤 is the outgoing
wire. Suppose wires 𝑢 and 𝑣 carry the values 𝑏* and 𝑐* when 𝐶 evaluated on 𝑎,
so that wire 𝑤 carries the value 𝑑* := 𝑔𝑤(𝑏*, 𝑐*). By the invariant above, we know
sk𝑢,1−𝑏* and sk𝑣,1−𝑐* but not sk𝑢,𝑏* and sk𝑣,𝑐* . We start by generating

(pk𝑤,𝑑* , rk
𝑤
𝑏*,𝑐*)← SimReKeyGen(pk𝑢,𝑏* , pk𝑣,𝑐*)
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We generate the other three recoding keys using ReKeyGen as follows:

rk𝑤1−𝑏*,𝑐*← ReKeyGen
(︀
pk𝑢,1−𝑏* , pk𝑣,𝑐* , sk𝑢,1−𝑏* , pk𝑤,𝑔𝑤(1−𝑏*,𝑐*)

)︀
rk𝑤𝑏*,1−𝑐*← ReKeyGen

(︀
pk𝑣,1−𝑐* , pk𝑢,𝑏* , sk𝑣,1−𝑐* , pk𝑤,𝑔𝑤(𝑏*,1−𝑐*)

)︀
rk𝑤1−𝑏*,1−𝑐*← ReKeyGen

(︀
pk𝑢,1−𝑏* , pk𝑣,1−𝑐* , sk𝑢,1−𝑏* , pk𝑤,𝑔𝑤(1−𝑏*,1−𝑐*)

)︀
Note that rk𝑤1−𝑏*,𝑐*, rk

𝑤
1−𝑏*,1−𝑐* are generated the same way in both KeyGen and

KeyGen* using sk𝑢,1−𝑏* .

Output the secret key

sk𝐶 :=
(︁
rk𝑤𝑏,𝑐 : 𝑤 ∈

[︀
ℓ+ 1, |𝐶|

]︀
, 𝑏, 𝑐 ∈ {0, 1}

)︁
Informally, the recoding key rk𝑤𝑏*,1−𝑐* looks the same as in KeyGen because of key

indistinguishability, and rk𝑤𝑏*,𝑐* (together with the simulated pk𝑤,𝑑*) looks the same as in
KeyGen because of the recoding simulation property.

Game sequence. Next, consider the following sequence of games. We use Adv0,Adv1, . . .
to denote the advantage of the adversary𝒜 in Games 0, 1, etc. Game 0 is the real experiment.
We then show that the games are either statistically or computationally indistinguishable.

Game 𝑖 for 𝑖 = 1, 2, . . . , 𝑞 As in Game 0, except the challenger answers the first 𝑖 key
queries using KeyGen* and the remaining 𝑞 − 𝑖 key queries using KeyGen. For the
𝑖’th key query 𝐶𝑖, we consider sub-Games 𝑖.𝑤 as follows:

Game 𝑖.𝑤, for 𝑤 = ℓ+ 1, . . . , |𝐶𝑖| The challenger switches (rk𝑤𝑏,𝑐 : 𝑏, 𝑐 ∈ {0, 1}) from
KeyGen to KeyGen*. More precisely:
∙ We switch (pk𝑤,𝑑* , rk

𝑤
𝑏*,𝑐*) from KeyGen to KeyGen*.

∙ We switch rk𝑤𝑏*,1−𝑐* from KeyGen to KeyGen*.
∙ The other two keys rk𝑤1−𝑏*,𝑐*, rk

𝑤
1−𝑏*,1−𝑐* are generated the same way in both

KeyGen and KeyGen*.

From lemma 3.5.5, we have

|Adv𝑖 − Adv𝑖+1| ≤ negl(𝜆) for all 𝑖

Note that in Game 𝑞, the challenger runs Setup* and answers all key queries using
KeyGen* with the selective challenge 𝑎 and generates the challenge ciphertext using
Enc.

Game 𝑞 + 1 Same as Game 𝑞, except the challenger generates the challenge ciphertext using
Enc* with 𝜓ℓ+1 = Encode(pkℓ+1, 𝑠). Clearly,

Adv𝑞+1 = Adv𝑞
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Game 𝑞 + 2 Same as Game 𝑞+1, except 𝜓ℓ+1
$← 𝒦. From lemma 3.5.6, there is an adversary

ℬ such that
|Adv𝑞+1 − Adv𝑞+2| ≤ Advcpℬ (𝜆)

Finally, by the one-time semantic security of (E,D) for all 𝑚0,𝑚1 ∈ ℳ, E(𝜓ℓ+1,𝑚0) is
indistinguishable from E(𝜓ℓ+1,𝑚1) (for 𝜓ℓ+1

$← 𝒦). Therefore, it follows that Adv𝑞+2 ≤
negl(𝜆), concluding the proof of security.

Lemma 3.5.5. Games 𝑖 and 𝑖+1 are (statistically) indistinguishable for all 𝑖 = 0, . . . , 𝑞−1.

Proof. In Game 𝑖+ 1, first 𝑖+ 1 key queries are answered using KeyGen* and the remaining
𝑞 − (𝑖+ 1) key queries using KeyGen. Consider a key query 𝐶𝑖+1 and for all 𝑤 = ℓ, . . . , |𝐶𝑖|,
sub-Games (𝑖 + 1).𝑤 defined as above. We argue that for all 𝑤 = ℓ, . . . , |𝐶𝑖| − 1, sub-
Games (𝑖 + 1).𝑤 and (𝑖 + 1).(𝑤 + 1) are statistically indistinguishable. Clearly, sub-Game
(𝑖 + 1).ℓ corresponds to Game 𝑖, where 𝑖 + 1’th key query is sampled using KeyGen and
sub-Game (𝑖 + 1).|𝐶𝑖| this corresponds to Game 𝑖 + 1, where 𝑖 + 1’th query sampled using
KeyGen* (the remaining queries are sampled identically). Now, the sub-Games (𝑖 + 1).𝑤
and (𝑖 + 1).(𝑤 + 1) differ in how recoding keys (rk𝑤+1

𝑏,𝑐 : 𝑏, 𝑐 ∈ {0, 1}) are sampled for query
𝐶𝑖+1. The statistical indistinguishability of keys rk𝑤+1

𝑏*,𝑐* follows from recoding simulation,
rk𝑤+1

𝑏*,1−𝑐* on indistinguishability w.r.t. sampling using keys sk𝑏* and sk1−𝑐* , and other two
keys rk𝑤+1

1−𝑏*,𝑐* , rk
𝑤+1
1−𝑏*,1−𝑐* are generated identically in two experiments. It follows that the two

sub-Games (𝑖 + 1).𝑤 and (𝑖 + 1).(𝑤 + 1) are statistically indistinguishable, concluding the
lemma.

Lemma 3.5.6. Games 𝑞 + 1 and 𝑞 + 2 are computationally indistinguishable.

Proof. Suppose there exists an adversary ℬ* that distinguishes between the Games 𝑞+1 and
𝑞 + 2. We construct and adversary ℬ that breaks correlated pseudorandomness property.
The adversary ℬ gets as input (pk𝑖, 𝜓𝑖)𝑖∈[ℓ], pkℓ+1, 𝜓

*, where 𝜓* is either a valid encoding
using key 𝑝𝑘ℓ+1 or a randomly chosen element. The adversary ℬ uses these values to invoke
algorithms Setup*,Enc*,KeyGen*, where it uses 𝜓ℓ+1 := 𝜓*. It invokes the adversary ℬ* and
the same thing. Clearly, if 𝜓* = Encode(pkℓ+1, 𝑠), then this experiment corresponds to Game
𝑞+ 1. On the other hand, if 𝜓* $← 𝒦 then this experiment corresponds to Game 𝑞+ 2. This
concludes the proof of the lemma.

3.6 Attribute-Based Encryption for Branching Programs

In this section, we present weak TOR and attribute-based encryption for branching programs,
which capture the complexity class log-space. As noted in Section 3.1.1, we exploit the fact
that in branching programs, the transition function depends on an input variable and the
current state; this means that one of the two input encodings during recoding is always a
“depth 0” encoding.
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Branching programs. Recall that a branching program Γ is a directed acyclic graph in
which every nonterminal node has exactly two outgoing edges labeled (𝑖, 0) and (𝑖, 1) for some
𝑖 ∈ [ℓ]. Moreover, there is a distinguished terminal accept node. Every input 𝑥 ∈ {0, 1}ℓ
naturally induces a subgraph Γ𝑥 containing exactly those edges labeled (𝑖, 𝑥𝑖). We say that
Γ accepts 𝑥 iff there is a path from the start node to the accept node in Γ𝑥. At the cost of
possibly doubling the number of edges and vertices, we may assume that there is at most
one edge connecting any two nodes in Γ.

3.6.1 Weak TOR

A weak “two-to-one” encoding (wTOR) scheme consists of the same algorithms as TOR,
except that KeyGen(pp, 𝑗) takes an additional input 𝑗 ∈ {0, 1}. That is, KeyGen may produce
different distributions of public/secret key pairs depending on 𝑗. Moreover, in ReKeyGen, the
first public key is always generated using KeyGen(pp, 0) and the second using KeyGen(pp, 1);
similarly, in Recode, the first encoding is always generated with respect to a public key from
KeyGen(pp, 0) and the second from KeyGen(pp, 1). Similarly, the correctness and statistical
security properties are relaxed.

Correctness. First, for every pk and 𝑠 ∈ 𝒮, there exists a family of sets Ψpk,𝑠,𝑗, 𝑗 =
0, 1, . . . , 𝑑max:

∙ Ψpk,𝑠,1 ⊆ · · · ⊆ Ψpk,𝑠,𝑑max .

∙ for all 𝜓, 𝜓′ ∈ Ψpk,𝑠,𝑑max and all 𝑚 ∈ℳ,

D(𝜓′,E(𝜓,𝑚)) = 𝑚

Secondly, the correctness of recoding requires that for any triple of key pairs (pk0, sk0), (pk1, sk1), (pktgt, sktgt)
respectively in the support of KeyGen(pp, 0),KeyGen(pp, 1),KeyGen(pp, 1) and any encodings
𝜓0 ∈ Encode(pk0, 𝑠) and 𝜓1 ∈ Ψpk1,𝑠,𝑗1 where 0 < 𝑗1,

Recode(rk, 𝜓0, 𝜓1) ∈ Ψpktgt,𝑠,𝑗1+1

Statistical Security Properties. We require recoding simulation as before, but not key
indistinguishability. However, we require the following additional property:

Back-tracking : For all (pk0, sk0) ← KeyGen(pp, 0) and all (pk1, sk1), (pktgt, sktgt) ←
KeyGen(pp, 1), the following distributions are identical:

ReKeyGen(pk0, pk1, sk0, pktgt) ≡ −ReKeyGen(pk0, pktgt, sk0, pk1)

Informally, this says that switching the order of pk1 and pktgt as inputs to ReKeyGen is the
same as switching the “sign” of the output. In our instantiations, the output of ReKeyGen
lies in a group, so negating the output simply refers to applying the group inverse operation.
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Computational Security Property. We define the advantage function Advcp𝒜 (𝜆) (mod-
ified to account for the additional input to KeyGen) to be the absolute value of:

Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝑏 = 𝑏′ :

pp← Setup(1𝜆); 𝑠← 𝒮;
(pk𝑖, sk𝑖)← KeyGen(pp, 0),
𝜓𝑖 ← Encode(pk𝑖, 𝑠), 𝑖 = 1, . . . , ℓ;
(pkℓ+1, skℓ+1)← KeyGen(pp, 1);
𝜓′0 ← Encode(pkℓ+1, 𝑠);

𝑏
$← {0, 1};𝜓′1

$← 𝒦
𝑏′ ← 𝒜(pk1, . . . , pkℓ+1, 𝜓1, . . . , 𝜓ℓ, 𝜓

′
𝑏)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
− 1

2

and we require that for all PPT 𝒜, the advantage function Advcp𝒜 (𝜆) is a negligible function
in 𝜆.

Remark 3.6.1. Due to the additional back-tracking property, it is not the case that a TOR
implies a weak TOR. However, we are able to instantiate weak TOR under weaker and larger
classes of assumptions than TOR.

3.6.2 Weak TOR from LWE

We provide an instantiation of weak TOR from LWE. The main advantage over our
construction of TOR in Section 3.4 is that the dependency of 𝑞 on 𝑑max is linear in 𝑑max

instead of exponential. Therefore, if 𝑞 is quasi-polynomial, we can handle any polynomial
𝑑max, as opposed to an a-prior bounded 𝑑max.

Lemma 3.6.1. Assuming dLWE𝑛,(ℓ+2)𝑚,𝑞,𝜒 where 𝑞 = 𝑂(𝑑max𝑛
3 log 𝑛), there is a weak TOR

scheme that is correct up to 𝑑max levels, where 𝑛 = 𝑛(𝜆), the error distribution 𝜒 = 𝜒(𝑛) =
𝐷Z,

√
𝑛, the modulus 𝑞 = 𝑞(𝑛) = 𝑑max · 𝑂(𝑛3 log 𝑛) and the number of samples 𝑚 = 𝑚(𝑛) =

𝑂(𝑛 log 𝑞).

Note that the parameters here are better than in Lemma 3.4.1. The construction of weak
TOR from learning with errors follows:

∙ Setup(1𝜆, 𝑑max): We are given parameters 𝑛,𝑚, 𝜒, 𝑞 and we set the error bound 𝐵 =
𝐵(𝑛) = 𝑂(𝑛) and the Gaussian parameter 𝑠 = 𝑠(𝑛) = 𝑂(

√
𝑛 log 𝑞). Output the global

public parameters pp = (𝑛, 𝜒,𝐵, 𝑞,𝑚, 𝑠). Define the domain 𝒮 of the encoding scheme
to be Z𝑛

𝑞 .

∙ KeyGen(pp, 𝑗): Run the trapdoor generation algorithm TrapSamp(1𝑛, 1𝑚, 𝑞) to obtain
a matrix A ∈ Z𝑛×𝑚

𝑞 together with the trapdoor T. Output

pk = A; sk = T.

∙ Encode(A, s): Sample an error vector e← 𝜒𝑚 and output the encoding 𝜓 := A𝑇 s+e ∈
Z𝑚

𝑞 .
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∙ ReKeyGen(A0,A1,Atgt,T): Outputs a low-norm matrix R such that A0R = Atgt−A1.
In particular,

R← SamPre(A0,T0,Atgt −A1, 𝑠)

∙ SimReKeyGen(A0,A1): Sample a matrix R← (𝐷Z,𝑠)
𝑚×𝑚 by sampling each entry from

the discrete Gaussian distribution 𝐷Z,𝑠. Output

rk := R; Atgt := A0R + A1

∙ Recode(rk,𝜓0,𝜓1): Outputs rk𝑇𝜓0 +𝜓1.

Correctness. We define the sets ΨA,s,𝑗 for pk := A ∈ Z𝑛×𝑚
𝑞 , s ∈ Z𝑛

𝑞 and 𝑗 ∈ [1 . . . 𝑑max] as
follows:

ΨA,s,𝑗 =
{︀
A𝑇 s + e : ||e||∞ ≤ 𝐵 · 𝑗 · (𝑠𝑚

√
𝑚)

}︀
The analysis is similar to that in the previous section. In particular, we observe right away
that

∙ ΨA,s,1 ⊆ ΨA,s,1 ⊆ . . . ⊆ ΨA,s,𝑑max .

∙ For any two encodings 𝜓,𝜓′ ∈ ΨA,s,𝑑max and 𝑚 ∈ {0, 1}𝑛, D(𝜓′,E(𝜓,𝑚)) = 𝑚, as
long as

𝐵 · 𝑑max · (𝑠𝑚
√
𝑚) ≤ 𝑞/4.

∙ Consider two encodings A𝑇 s + e ∈ Encode(A, s) and 𝜓1 ∈ ΨA1,s,𝑗1 for any 𝑗1 ∈ N.
Then, 𝜓0 = A𝑇

0 s + e0 and 𝜓1 := A𝑇
1 s + e1 where ||e0||∞ ≤ 𝐵 and ||e1||∞ ≤ 𝑗1 · 𝐵 ·

(𝑠𝑚
√
𝑚).

Then, the recoded ciphertext 𝜓tgt is computed as follows:

𝜓tgt := R𝑇𝜓0 +𝜓1

= R𝑇 (A𝑇
0 s + e0) + (A𝑇

1 s + e1)

= A𝑇
tgts + etgt

where the last equation is because Atgt = A0R + A1 and we define etgt := R𝑇e0 + e1.
Thus,

||etgt||∞ ≤ 𝑚 · ||R||∞||e0||∞ + ||e1||∞
≤ 𝑚 · 𝑠

√
𝑚 ·𝐵 +𝐵 · 𝑗1 · (𝑠𝑚

√
𝑚)

= (𝑗1 + 1) ·𝐵 · (𝑠𝑚
√
𝑚)

exactly as required. Here, the second inequality is because ||R||∞ ≤ 𝑠
√
𝑚 by

Lemma 2.4.1. This finishes our proof of correctness.
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Security. Correlated pseudorandomness follows from dLWE𝑛,(ℓ+2)𝑚,𝑞,𝜒 where 𝑞 = 𝑛 · 𝑑max.
In particular, by the dLWE, given A1, . . . ,Aℓ+1, 𝜓1, . . . , 𝜓ℓ, 𝜓

*, no adversary can distinguish
between the cases when 𝜓* is a valid LWE sample under key Aℓ+1 or a randomly chosen
value from Z𝑚

𝑞 . Recoding simulation follows readily from Lemma 2.4.1 by an argument
identical to the one for the construction of TOR in Section 3.4. For back-tracking, negation
of a recoding matrix R is simply the additive inverse over Z𝑚

𝑞 . That is, the output of
ReKeyGen(pk0, pk1, sk0, pktgt) is a matrix R such that A0R = Atgt −A1 and the output of
ReKeyGen(pk0, pktgt, sk0, pk1), is also a matrix R′ such that A0R

′ = A1 −Atgt. It is easy to
see that the output R is distributed identically to −R′.

3.6.3 Weak TOR from Bilinear Maps

We use asymmetric groups for maximal generality and for conceptual clarity. Let
𝐺1, 𝐺2, 𝐺𝑇 ← GroupGen(1𝜆) be descriptions cyclic groups (with corresponding generators)
of prime order 𝑞 and 𝑒 : 𝐺1 × 𝐺2 → 𝐺𝑇 is a non-degenerate bilinear map. We require
that the group operations in 𝐺 and 𝐺𝑇 as well the bilinear map 𝑒 are computable in
deterministic polynomial time with respect to 𝜆. Let 𝑔1, 𝑔2 denote random generators of
𝐺1, 𝐺2 respectively. The DBDH assumption says that the following two distributions are
computationally indistinguishable:[︂

𝑔1, 𝑔2, 𝑔
𝑎
1 , 𝑔

𝑎
2 , 𝑔

𝑏
2, 𝑔

𝑠
1, 𝑒(𝑔1, 𝑔2)

𝑎𝑏𝑠

]︂
𝑐
≈

[︂
𝑔1, 𝑔2, 𝑔

𝑎
1 , 𝑔

𝑎
2 , 𝑔

𝑏
2, 𝑔

𝑠
1, 𝑔

𝑐
𝑇

]︂
where 𝑎, 𝑏, 𝑠 and 𝑐 are randomly chosen from Z𝑞.

∙ Setup(1𝜆, 𝑑max): Outputs pp := (𝑔1, 𝑔2, 𝑔
𝑎
1 , 𝑔

𝑎
2).

∙ KeyGen(pp, 𝑗):

– If 𝑗 = 0, then samples 𝑡 $← Z𝑞 and outputs

(pk, sk) := ((𝑔
𝑎/𝑡
1 , 𝑔

𝑎/𝑡
2 ), 𝑡)

– If 𝑗 ≥ 1, output pk
$← 𝐺2.

∙ Encode(pk, 𝑠):

– If pk = (𝑔
𝑎/𝑡
1 , 𝑔

𝑎/𝑡
2 ) ∈ 𝐺1 ×𝐺2, output (𝑔

𝑎/𝑡
1 )𝑠

– If pk ∈ 𝐺2, output 𝑒(𝑔𝑎1 , pk)𝑠

∙ Recode(rk, 𝑐0, 𝑐1): Outputs 𝑒(𝑐0, rk) · 𝑐1.

∙ ReKeyGen((𝑔
𝑎/𝑡
1 , 𝑔

𝑎/𝑡
2 ), pk1, pktgt, 𝑡): Outputs rk := (pktgt · pk−11 )𝑡 ∈ 𝐺2.
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∙ SimReKeyGen((𝑔
𝑎/𝑡
1 , 𝑔

𝑎/𝑡
2 ), pk1): Picks 𝑧 $← 𝑍𝑞 and outputs

rk := (𝑔
𝑎/𝑡
2 )𝑧, pktgt := pk1 · (𝑔𝑎2)𝑧

Correctness. Define Ψpk,𝑠,𝑗 := {Encode(pk, 𝑠)}. For recoding, observe that:

Recode
(︀
(pktgt · pk−11 )𝑡, 𝑔

𝑎𝑠/𝑡
1 , 𝑒(𝑔𝑎1 , pk1)

𝑠
)︀

= 𝑒(𝑔
𝑎𝑠/𝑡
1 , (pktgt · pk−11 )𝑡) · 𝑒(𝑔𝑎1 , pk1)𝑠

= 𝑒(𝑔𝑎1 , (pktgt · pk−11 )𝑠) · 𝑒(𝑔𝑎1 , pk1)𝑠

= 𝑒(𝑔𝑎1 , pktgt)
𝑠 = Encode(pktgt, 𝑠)

Security. For back-tracking, negation is simply the multiplicative inverse over 𝐺𝑞.
Correlation pseudorandomness follows readily from the DBDH assumption. In particular,
suppose there is an adversary 𝒟 that can distinguish between

(𝑔1, 𝑔1, 𝑔
𝑎
1 , 𝑔

𝑎
2 ,
(︀
𝑔
𝑎/𝑡
1 , 𝑔

𝑎/𝑡
2 , (𝑔

𝑎/𝑡
1 )𝑠

)︀
,
(︀
𝑔𝑏12 , 𝑒(𝑔

𝑎
1 , 𝑔

𝑏1
2 )𝑠, . . . , 𝑔𝑏ℓ2 , 𝑒(𝑔

𝑎
1 , 𝑔

𝑏ℓ
2 )𝑠, 𝑔

𝑏ℓ+1

2 , 𝑒(𝑔𝑎1 , 𝑔
𝑏ℓ+1

2 )𝑠
)︀

and
(𝑔1, 𝑔1, 𝑔

𝑎
1 , 𝑔

𝑎
2 ,
(︀
𝑔
𝑎/𝑡
1 , 𝑔

𝑎/𝑡
2 , (𝑔

𝑎/𝑡
1 )𝑠

)︀
,
(︀
𝑔𝑏12 , 𝑒(𝑔

𝑎
1 , 𝑔

𝑏1
2 )𝑠, . . . , 𝑔𝑏ℓ2 , 𝑒(𝑔

𝑎
1 , 𝑔

𝑏ℓ
2 )𝑠, 𝑔

𝑏ℓ+1

2 , 𝑔𝑐𝑇
)︀

for a randomly chosen 𝑐 from Z𝑞. Then, we can construct an adversary 𝒜 that breaks DBDH
assumption. In particular, 𝒜 is given 𝑔1, 𝑔2, 𝑔𝑎1 , 𝑔𝑎2 , 𝑔𝑏2, 𝑔𝑠1, 𝛼 where 𝛼 is either either 𝑔𝑎𝑏𝑠𝑇 or 𝑔𝑐𝑇
for a randomly chosen 𝑐. Then, the adversary 𝒜 can simulate components

(︀
𝑔
𝑎/𝑡
1 , 𝑔

𝑎/𝑡
2 , (𝑔

𝑎/𝑡
1 )𝑠)

by sampling 𝑡′ and setting 𝑡 = 𝑎/𝑡′. Then, 𝑔𝑎/𝑡1 = 𝑔𝑡
′
1 , 𝑔

𝑎/𝑡
2 = 𝑔𝑡

′
2 and (𝑔

𝑎/𝑡
1 )𝑠 = 𝑔𝑡

′𝑠
1 (which can

be computed given 𝑔𝑠1 and 𝑡′). It can also simulate 𝑔𝑏𝑖2 , 𝑒(𝑔𝑎1 , 𝑔
𝑏𝑖
2 )𝑠 for all 𝑖 ≤ ℓ by sampling

𝑏𝑖 in clear, and then using 𝑔𝑠1, 𝑔𝑎2 and 𝑏𝑖 to compute 𝑒(𝑔𝑠1, 𝑔𝑎2)𝑏𝑖 = 𝑒(𝑔𝑎1 , 𝑔
𝑏𝑖
2 )𝑠. Finally, it sets

𝑏ℓ+1 := 𝑏 from the challenge together with 𝛼, and calls the adversary 𝒟 to distinguish.

3.6.4 Attribute-Based Encryption from weak TOR

Setup(1𝜆, 1ℓ, 𝑑max) : For each one of ℓ input bits, generate two public/secret key pairs. Also,
generate a public/secret key pair for the start and accept states:

(pk𝑖,𝑏, sk𝑖,𝑏)← KeyGen(pp, 0) for 𝑖 ∈ [ℓ], 𝑏 ∈ {0, 1}
(pkstart, skstart)← KeyGen(pp, 1)

(pkaccept, skaccept)← KeyGen(pp, 1)

Output

mpk :=

(︂
pk1,0 pk2,0 . . . pkℓ,0 pkstart
pk1,1 pk2,1 . . . pkℓ,1 pkaccept

)︂
msk :=

(︂
sk1,0 sk2,0 . . . skℓ,0 skstart
sk1,1 sk2,1 . . . skℓ,1 skaccept

)︂
53



Enc(mpk, 𝑎,𝑚) : For 𝑎 ∈ {0, 1}ℓ, choose a uniformly random 𝑠
$← 𝒮 and encode it under the

public keys specified by the index bits and the start state:

𝜓𝑖 ← Encode(pk𝑖,𝑎𝑖 , 𝑠) for all 𝑖 ∈ [ℓ]

𝜓start ← Encode(pkstart, 𝑠)

Encrypt the message:
𝜏 ← E(Encode(pkaccept, 𝑠),𝑚)

Output the ciphertext:

ct𝑎 =
(︀
𝜓1, 𝜓2, . . . , 𝜓ℓ, 𝜓start, 𝜏

)︀
KeyGen(msk,Γ): Γ : {0, 1}ℓ → {0, 1} is a branching program that takes a ℓ-bit input and

outputs a single bit.

∙ For every node 𝑢, except the start and accept nodes, sample public/secret key
pair:

(pk𝑢, sk𝑢)← KeyGen(pp, 1)

∙ For every edge (𝑢, 𝑣) labeled (𝑖, 𝑏) in Γ, sample a recoding key rk𝑢,𝑣 as follows:

rk𝑢,𝑣 ← ReKeyGen
(︁
pk𝑖,𝑏, pk𝑢, sk𝑖,𝑏, pk𝑣

)︁
The secret key skΓ is the collection of all the recoding keys rk𝑢,𝑣 for every edge (𝑢, 𝑣)
in Γ.

Dec(skΓ, ct𝑎) : Suppose Γ(𝑎) = 1; output ⊥ otherwise. Let Π denote the (directed) path
from the start node to the accept node in Γ𝑎. For every edge (𝑢, 𝑣) labeled (𝑖, 𝑎𝑖) in Π,
apply the recoding algorithm on the two encodings 𝜓𝑖, 𝜓𝑢 and the recoding key rk𝑢,𝑣:

𝜓𝑣 ← Recode
(︁
rk𝑢,𝑣, 𝜓𝑖, 𝜓𝑢

)︁
If Γ(𝑎) = 1, we obtain 𝜓accept. Decrypt and output the message:

𝑚← D(𝜓accept, 𝜏)

Lemma 3.6.2 (Correctness). Let 𝒢 = {Γ}𝜆 be a collection of polynomial-size branching
programs of depth at most 𝑑max and let wTOR be a weak “two-to-one” recoding scheme for
𝑑max levels. Then, the construction presented above is a correct attribute-based encryption
scheme for 𝒢.

Proof. Let Π denote the directed path from the start to the accept nodes in Γ𝑎. We show

54



via induction on nodes 𝑣 along the path Π that

𝜓𝑣 ∈ Ψpk𝑣 ,𝑠,𝑗

where 𝑗 is the depth of node 𝑣 along the path. The base case for 𝑣 := start node follows
immediately from correctness of Encode. For the inductive step, consider a node 𝑣 along the
path Π at depth 𝑗 for some edge (𝑢, 𝑣) labeled (𝑖, 𝑎𝑖). By the induction hypothesis,

𝜓𝑢 ∈ Ψpk𝑢,𝑠,𝑗0

where 𝑗0 < 𝑗 denote the depths of node 𝑢. Also by the correctness of the Encode algorithm,
for all 𝑖 ∈ [ℓ]

𝜓𝑖 ∈ Ψpk𝑖,𝑎𝑖 ,𝑠,0

It follows immediately from the correctness of Recode that

𝜓𝑣 ∈ Ψpk𝑣 ,𝑠,𝑗0+1 ⊆ Ψpk𝑣 ,𝑠,𝑗

which completes the inductive proof. Since 𝐶(𝑎) = 1, we have

𝜓accept ∈ Ψpkaccept,𝑠,𝑑max

Recall that 𝜏 ← E(Encode(pkaccept, 𝑠),𝑚). Finally, by the correctness of (E,D),

D(𝜓accept, 𝜏) = 𝑚

Lemma 3.6.3 (Selective Security). For any adversary 𝒜 against selective security of the
attribute-based encryption scheme for branching programs, there exist an adversary ℬ against
correlated pseudorandomness of wTOR whose running time is essentially the same as that
of 𝒜, such that

Advpe𝒜 (𝜆) ≤ Advcpℬ (𝜆) + negl(𝜆)

where negl(𝜆) captures the statistical security terms in TOR.

In the proof of security, we will rely crucially on the following combinatorial property
of branching programs: for any input 𝑥, the graph Γ𝑥 does not contain any cycles as an
undirected graph.

Alternative algorithms. Fix the selective challenge 𝑎. We also get a collection
of public keys, corresponding encodings from the “outside”: (pk𝑖, 𝜓𝑖)𝑖∈[ℓ+2], where the
challenge is to decide whether 𝜓ℓ+1 is Encode(pkℓ+2, 𝑠) or random. The main challenge
is design an alternative algorithm KeyGen* for answering secret key queries without knowing
sk1,𝑎1 , . . . , skℓ,𝑎ℓ or skstart, skaccept. We consider the following “alternative” algorithms.
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Setup*(1𝜆, 1ℓ, 𝑑max) : Let

(pk𝑖,1−𝑎𝑖 , sk𝑖,1−𝑎𝑖) ← KeyGen(pp, 0) for 𝑖 ∈ [ℓ]

pk𝑖,𝑎𝑖 := pk𝑖 for 𝑖 ∈ [ℓ]

pkstart := pkℓ+1

pkaccept := pkℓ+2

Define and output the master public key as follows:

mpk =

(︂
pk1,0 pk2,0 . . . pkℓ,0 pkstart
pk1,1 pk2,1 . . . pkℓ,1 pkaccept

)︂

Enc*(mpk, 𝑎,𝑚) : Define

𝜓𝑖,𝑎𝑖 := 𝜓𝑖 for all 𝑖 ∈ [ℓ]

𝜓start := 𝜓ℓ+1

𝜓accept := 𝜓ℓ+2

Encrypt the message 𝑚:
𝜏 ← E(𝜓accept, 𝑏)

Output the simulated ciphertext

ct𝑎 =
(︀
𝜓1, 𝜓2, . . . , 𝜓ℓ, 𝜓start, 𝜏

)︀
KeyGen*(msk,Γ) : Let Γ′𝑎 denote the undirected graph obtained from Γ𝑎 by treating every

directed edge as an undirected edge (while keeping the edge label). Observe that Γ′𝑎
satisfies the following properties:

∙ Γ′𝑎 contains no cycles. This is because Γ𝑎 is acyclic and every nonterminal node
contains exactly one outgoing edge.

∙ The start node and the accept node lie in different connected components in Γ′𝑎,
since Γ(𝑎) = 0.

Simulation invariant: for each “active” edge labeled (𝑖, 𝑎𝑖) from node 𝑢 to node 𝑣,
simulate the recoding key. Choose our own public/secret key pair for each “inactive”
edges (𝑖, 1− 𝑎𝑖) and generate the recoding key honestly.

∙ Run a DFS in Γ′𝑎 starting from the start node. Whenever we visit a new node 𝑣
from a node 𝑢 along an edge labeled (𝑖, 𝑎𝑖), we set:

(pk𝑣, rk𝑢,𝑣) ← SimReKeyGen
(︀
pk𝑖,𝑎, pk𝑢

)︀
if (𝑢, 𝑣) is a directed edge in Γ

(pk𝑣,−rk𝑣,𝑢) ← SimReKeyGen
(︀
pk𝑖,𝑎, pk𝑢

)︀
if (𝑣, 𝑢) is a directed edge in Γ
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Here, we exploit the back-tracking property in wTOR.
Note that since Γ(𝑎) = 0, then the accept node is not assigned a public key by
this process.

∙ For all nodes 𝑢 without an assignment, run (pk𝑢, sk𝑢)← KeyGen(pp, 1).

∙ For every remaining edge (𝑢, 𝑣) labeled (𝑖, 1−𝑎𝑖) in Γ, sample a recoding key rk𝑢,𝑣
as in KeyGen using sk𝑖,1−𝑎 as follows:

rk𝑢,𝑣 ← ReKeyGen
(︁
pk𝑖,1−𝑎, pk𝑢, sk𝑖,1−𝑎, pk𝑣

)︁
The secret key skΓ is simply the collection of all the recoding keys rk𝑢,𝑣 for every edge
(𝑢, 𝑣) in Γ.

Game sequence. Next, consider the following sequence of games. We use Adv0,Adv1, . . .
to denote the advantage of the adversary 𝒜 in Games 0, 1, etc. Let 𝑛 denote the number
of edges in a branching program Γ labeled (𝑖, 𝑎𝑖) for some 𝑖, and for all 𝑗 ∈ [𝑛] let 𝑒𝑗 denote
the actual edge.

Game 0 Real experiment.

Game 𝑖 for 𝑖 = 1, 2, . . . , 𝑞 As in Game 0, except the challenger answers the first 𝑖 key
queries using KeyGen* and the remaining 𝑞 − 𝑖 key queries using KeyGen. For the
𝑖’th key query Γ𝑖, we also consider sub-Games 𝑖.𝑒 as follows:

Game 𝑖.𝑗, for 𝑗 = 1, . . . , 𝑛 For edge 𝑒𝑗 = (𝑢, 𝑣) labeled (𝑖, 𝑎𝑖), the challenger switches
the simulated recoding key rk𝑢,𝑣 from KeyGen to KeyGen*.

From lemma 3.6.4, it follows that

|Adv𝑖 − Adv𝑖+1| ≤ negl(𝜆) for all 𝑖

Note that in Game 𝑞, the challenger runs Setup* and answers all key queries using
KeyGen* with the selective challenge 𝑎 and generates the challenge ciphertext using
Enc.

Game 𝑞 + 1 Same as Game 𝑞, except the challenger generates the challenge ciphertext using
Enc* with 𝜓ℓ+2 ← Encode(pkℓ+2, 𝑠).

Adv𝑞+1 = Adv𝑞

Game 𝑞 + 2 Same as Game 𝑞 + 1, except 𝜓ℓ+2
$← 𝒦. It is straight-forward to construct an

adversary ℬ such that
|Adv𝑞+1 − Adv𝑞+2| ≤ Advcpℬ (𝜆)
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Finally, by the one-time semantic security of (E,D) for all 𝑚0,𝑚1 ∈ ℳ, E(𝜓ℓ+2,𝑚0) is
indistinguishable from E(𝜓ℓ+2,𝑚1) (for 𝜓ℓ+2

$← 𝒦). Therefore, it follows that Adv𝑞+2 ≤
negl(𝜆), concluding the proof of security.

Lemma 3.6.4. Games 𝑖 and 𝑖+1 are (statistically) indistinguishable for all 𝑖 = 0, . . . , 𝑞−1.

Proof. The difference in two games is in how 𝑖 + 1’st key query is answered. In Game 𝑖,
it is answered using KeyGen, whereas in Game 𝑖 + 1 it is answered using KeyGen*. Now,
consider sub-Games (𝑖+ 1).𝑗 and (𝑖+ 1).(𝑗 + 1). The difference in two sub-Games is in how
the recoding key 𝑟𝑘𝑢,𝑣. Now, by the recoding simulation and back-tracking, it follows that
the keys sampled statistically indistinguishable, concluding the lemma.

Lemma 3.6.5. Games 𝑞 + 1 and 𝑞 + 2 are computationally indistinguishable.

Proof. Suppose there exists an adversary ℬ* that distinguishes between the Games 𝑞+1 and
𝑞 + 2. We construct and adversary ℬ that breaks correlated pseudorandomness property.
The adversary ℬ gets as input (pk𝑖, 𝜓𝑖)𝑖∈[ℓ+1], pkℓ+2, 𝜓

*, where 𝜓* is either a valid encoding
using key 𝑝𝑘ℓ+2 or a randomly chosen element. The adversary ℬ uses these values to invoke
algorithms Setup*,Enc*,KeyGen*, where it uses 𝜓ℓ+2 := 𝜓*. It invokes the adversary ℬ* and
the same thing. Clearly, if 𝜓* = Encode(pkℓ+2, 𝑠), then this experiment corresponds to Game
𝑞+ 1. On the other hand, if 𝜓* $← 𝒦 then this experiment corresponds to Game 𝑞+ 2. This
concludes the proof of the lemma.

3.7 Extensions

3.7.1 Outsourcing Decryption

In this section we show how to modify our main construction of attribute-based encryption
to support outsourcing of decryption circuits, similar to [GHW11]. Syntactically, ABE with
outsourcing decryption consists of algorithms (Setup,KeyGen,Eval,Enc,Dec), satisfying the
same semantics as standard ABE, except:

1. we require that the KeyGen algorithm on input (msk, 𝐶) returns two keys:

∙ the evaluation key ek𝐶 , that is given to a computationally powerful proxy,

∙ and a decryption key dk, given to the client.

2. Given a ciphertext ct𝑎, the proxy must perform the “bulk” of the computation by
running Eval(ek𝐶 , ct𝑎) → ct′𝑎. The client, holding the decryption key dk, can then
compute Dec(dk, ct′𝑎)→ 𝑚 iff 𝐶(𝑎) = 1.

Formally, we require that the runtime of Dec is poly(𝜆, 𝑑max), where 𝜆 is the security
parameter and 𝑑max is the maximum circuit depth (in particular, it is independent on the
size of 𝐶). The other correctness properties are the same as in standard ABE.
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We envision a semi-honest proxy server, where it performs all algorithms correctly but
tries to learn the message payload. That is, the security ensures that an adversary (that may
play proxy’s role) should learn nothing about the message, conditioned on that it queries for
decryption keys dk’s for predicates that are not satisfied by the challenge index (note, the
adversary can query for evaluation keys separately for predicates that are satisfied). More
formally, for a stateful adversary 𝒜 (that can maintain a global state information throughout
the execution of the experiment), we consider the following game:

∙ Phase 1: The adversary specifies the challenge index 𝑎, gives it to the challenger who
runs the Setup algorithm and returns the master public key mpk to the adversary.

∙ Phase 2: The adversary may issue oracle queries of the form 𝐶 to KeyGen algorithm
and specify whether to obtain ek𝐶 only or both (ek𝐶 , dk). It outputs two challenge
messages 𝑚0,𝑚1.

∙ Phase 3: The challenger runs ct𝑎 ← Enc(mpk, 𝑎,𝑚𝑏) for a randomly chosen bit 𝑏, and
gives ct𝑎 to the adversary.

∙ Phase 4: Is the same as Phase 2, where eventually the adversary outputs a guess bit
𝑏′.

The ABE with outsourcing decryption capabilities is said to be secure if no adversary can
guess the bit 𝑏 with probability significantly better than 1/2, conditioned on that for all
decryption keys dk that it obtained for predicates 𝐶, 𝐶(𝑎) = 0.

We now give a high-level overview of the changes applied to our main construction and
then provide a formal construction. As before, the key-generation algorithm assigns two keys
for each circuit wire. The evaluation key consists of all the recoding keys for the circuit. In
addition, the output wire has another key pkout which now plays a special role. The recoding
key from pk|𝐶|,1 to pkout is only given to the client as the decryption key. If 𝐶(𝑎) = 1, the
the proxy computes an encoding under the pk|𝐶|,1 and forwards it to the client. The client
applies the transformation, and decrypts the message. For technical reasons, since we are
using “two-to-one” recoding mechanism, we need to introduce an auxiliary public key pkin
and a corresponding encoding.

Setup(1𝜆, 1ℓ, 𝑑max) : For each of the ℓ input wires, generate two public/secret key pairs. Also,
generate an additional public/secret key pair:

(pk𝑖,𝑏, sk𝑖,𝑏)← KeyGen(pp) for 𝑖 ∈ [ℓ], 𝑏 ∈ {0, 1}
(pkout, skout)← KeyGen(pp)

(pkin, skin)← KeyGen(pp)

Output

mpk :=

(︂
pk1,0 pk2,0 . . . pkℓ,0 pkin
pk1,1 pk2,1 . . . pkℓ,1 pkout

)︂
msk :=

(︂
sk1,0 sk2,0 . . . skℓ,0 skin
sk1,1 sk2,1 . . . skℓ,1 skout

)︂
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Enc(mpk, 𝑎,𝑚) : For 𝑎 ∈ {0, 1}ℓ, choose a uniformly random 𝑠
$← 𝒮 and encode it under the

public keys specified by the index bits:

𝜓𝑖 ← Encode(pk𝑖,𝑎𝑖 , 𝑠) for all 𝑖 ∈ [ℓ]

Encode 𝑠 under the input public key:

𝜓in ← Encode(pkin, 𝑠)

Encrypt the message 𝑚:
𝜏 ← E(Encode(pkout, 𝑠),𝑚)

Output the ciphertext

ct𝑎 :=
(︀
𝜓1, 𝜓2, . . . , 𝜓ℓ, 𝜓in, 𝜏

)︀
KeyGen(msk, 𝐶) :

1. For every non-input wire 𝑤 = ℓ+ 1, . . . , |𝐶| of the circuit 𝐶, and every 𝑏 ∈ {0, 1},
generate public/secret key pairs:

(pk𝑤,𝑏, sk𝑤,𝑏)← KeyGen(pp)

2. For the gate 𝑔 = (𝑢, 𝑣, 𝑤) with output wire 𝑤, compute the four recoding keys
rk𝑤𝑏,𝑐 (for 𝑏, 𝑐 ∈ {0, 1}):

rk𝑤𝑏,𝑐 ← ReKeyGen
(︁
pk𝑢,𝑏, pk𝑣,𝑐, sk𝑢,𝑏, pk𝑤,𝑔𝑤(𝑏,𝑐)

)︁
3. Also, compute the recoding key

rkout ← ReKeyGen
(︁
pk|𝐶|,1, pkin, sk|𝐶|,1, pkout

)︁
Output the evaluation key which is a collection of 4(|𝐶| − ℓ) recoding keys

ek𝐶 :=
(︁
rk𝑤𝑏,𝑐 : 𝑤 ∈

[︀
ℓ+ 1, |𝐶|

]︀
, 𝑏, 𝑐 ∈ {0, 1}

)︁
and the decryption key dk := rkout.

Eval(ek𝐶 , ct𝑎) : We tacitly assume that ct𝑎 contains the index 𝑎. For 𝑤 = ℓ+ 1, . . . , |𝐶|, let
𝑔 = (𝑢, 𝑣, 𝑤) denote the gate with output wire 𝑤. Suppose wires 𝑢 and 𝑣 carry the
values 𝑏* and 𝑐*, so that wire 𝑤 carries the value 𝑑* := 𝑔𝑤(𝑏*, 𝑐*). Compute

𝜓𝑤,𝑑* ← Recode
(︁
rk𝑤𝑏*,𝑐* , 𝜓𝑢,𝑏* , 𝜓𝑣,𝑐*

)︁
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If 𝐶(𝑎) = 1, then we would have computed 𝜓|𝐶|,1. Output

ct′𝑎 := (𝜓|𝐶|,1, 𝜓in, 𝜏)

If 𝐶(𝑎) = 0, output ⊥.

Dec(dk, ct′𝑎) : Apply the transformation

𝜓out ← Recode
(︁
rkout, 𝜓in, 𝜓|𝐶|,1

)︁
and output the message

𝑚← D
(︀
𝜓out, 𝜏

)︀
Security We informally state how to modify the simulator in the proof of security in
Section-3.5.4. The simulator gets {pk𝑖, 𝜓𝑖}𝑖∈[ℓ+2] from the “outside”. It assigns pk1, . . . , pkℓ
as the public keys specified by the bits of 𝑎 and pkin := pkℓ+1, pkout := pkℓ+2. It is easy to
see how to simulate the ciphertext: all the input encodings become a part of it, as well as
an encryption of the message using 𝜓out := 𝜓ℓ+2. Now, the evaluation key ek is simulated by
applying the TOR simulator.

∙ For query 𝐶 such that 𝐶(𝑎) = 0, the simulator can choose (pk|𝐶|,1, sk|𝐶|,1) by itself (the
public key pk|𝐶|,0 is “fixed” by the TOR simulator). Hence, the decryption key dk can
be computed using sk|𝐶|,1.

∙ On the other hand, for query 𝐶 such that 𝐶(𝑎) = 1, the adversary is not allowed to
obtain the decryption key dk, hence there is not need to simulate it.

3.7.2 Extending Secret Keys

Consider the following problem: a users holds two (or more) secret keys sk𝐶1 and sk𝐶2 . 𝐶1

allows to decrypt all ciphertexts addressed to human resources department and 𝐶2 allows
to decrypt ciphertexts addressed to share holders. The user wishes to create (and delegate)
another secret key sk𝐶* that allows to decrypt ciphertexts addressed to human resources
and share holders. The question that we study is whether it is possible to allow the user to
compute sk𝐶* without calling the authority holding the master secret key msk.

More formally, given {sk𝐶𝑖
}𝑖∈[𝑞] we require an additional algorithm Extend({sk𝐶𝑖

}𝑖∈[𝑞], 𝐶*)
that returns a secret key sk𝐶* for any circuit 𝐶* that is an black-box monotone composition
of 𝐶𝑖’s. The correctness properties are that of the standard ABE, in addition to that sk𝐶*

can be used to decrypt ciphertexts ct𝑎 if 𝐶*(𝑎) = 1. The security properties also remain
similar to standard ABE: no adversary should be able to learn anything from the ciphertext
ct𝑎 about the message 𝑚 given many secret keys sk𝐶 for queries 𝐶 such that 𝐶(𝑎) = 0, where
secret key sk𝐶 may be generated via KeyGen or Extend algorithms. Note that only monotone
compositions are realizable, since otherwise a users holding a secret keys sk𝐶 where 𝐶(𝑎) = 0
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could come up with a secret key for 𝐶 and hence break the security game.

To suppose monotone extensions, it is enough to show how to obtain (1) sk𝐶1 and 𝐶2 given
sk𝐶1 , sk𝐶2 , and (2) sk𝐶1 or 𝐶2 given sk𝐶1 , sk𝐶2 . We start from the construction presented in
Section-3.7.1 and explain how to modify it.

∙ First, instead of fixing pk|𝐶𝑖|,1 = pkout in this construction, we sample (pk|𝐶𝑖|,1, sk|𝐶𝑖|,1)←
KeyGen(pp) for every query 𝐶𝑖. In the secret key sk𝐶𝑖

, in additional to all recoding
keys for the internal gates, we publish

rkaux ← ReKeyGen(pk|𝐶𝑖|,1, pk|𝐶𝑖|,1, sk|𝐶𝑖|,1, pkout)

and also include the secret key sk|𝐶𝑖|,1. Clearly, this does not affect the correctness,
because given an encoding under pk|𝐶𝑖|,1 the user can compute the encoding under pkout
and record the message if 𝐶𝑖(𝑎) = 1. Moreover, this does not affect the security since
our simulation proceeds by sampling (pk|𝐶𝑖|,1, sk|𝐶𝑖|,1) honestly using KeyGen algorithm
and the fact the adversary is restricted to queries 𝐶𝑖 such that 𝐶𝑖(𝑎) = 0.

∙ Now, suppose the user holds sk𝐶1 and sk𝐶2 , let 𝐶* = 𝐶1 and 𝐶2 (binary OR-gate is
handled analogously). Then, we define Extend(sk𝐶1 , sk𝐶2 , 𝐶

* = 𝐶1 and 𝐶2) as follows.
Sample keys associated with the active value (i.e., “1”) at the output wire of 𝐶*:

(pk|𝐶*|,1, sk|𝐶*|,1)← KeyGen(pp)

Also, sample four recoding keys rk𝐶
*

𝑏,𝑐 (for 𝑏, 𝑐 ∈ {0, 1}):

(pk|𝐶*|,0, rk
𝐶*

0,0)← SimReKeyGen(pk|𝐶1|,0, pk|𝐶2|,0)

rk𝐶
*

0,1 ← ReKeyGen
(︁
pk|𝐶1|,0, pk|𝐶2|,1, sk|𝐶2|,1, pk|𝐶*|,0

)︁
rk𝐶

*

1,0 ← ReKeyGen
(︁
pk|𝐶1|,1, pk|𝐶2|,0, sk|𝐶1|,1, pk|𝐶*|,0

)︁
rk𝐶

*

1,1 ← ReKeyGen
(︁
pk|𝐶1|,1, pk|𝐶2|,1, sk|𝐶1|,1, pkout

)︁
And an auxiliary recoding key

rkaux ← ReKeyGen(pk|𝐶*|,1, pk|𝐶*|,1, sk|𝐶*|,1, pkout)

The secret key sk𝐶* consists of all recoding keys for the internal gates of 𝐶1 and 𝐶1,
recoding keys rk𝐶

*

𝑏,𝑐 for 𝑏, 𝑐 ∈ {0, 1}, rkaux and secret key sk|𝐶*|,1.

It is easy to see that the correctness is easy to satisfy as before. In particular, given encoding
under output public key pk|𝐶*|,1, the user can obtain encoding under pkaux, and therefore
recover the message if 𝐶*(𝑎) = 1. Also, the security holds similarly, by satisfying the
following invariant: for all inactive wires 𝑤 (wires carrying value “0” when evaluating 𝐶*(𝑎))
of the circuit, the simulator knows the secret key sk𝑤,0. Hence, it knows the secret key sk|𝐶*|,1
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for all 𝐶* such that 𝐶*(𝑎) = 0 and can use it to compute rkaux by running:

rkaux ← ReKeyGen(pk|𝐶*|,1, pk|𝐶*|,1, sk|𝐶*|,1, pkout).

The remaining internal recoding keys (and the ciphertext) are sampled by the simulator
identically as in the security proof in Section 3.5.3.

3.8 Conclusions and Open Problems
In this chapter we showed a construction of attribute-based encryption from lattices.
The main drawback of our construction is the dependence on the depth. It remains an
open problem to remove this dependence, perhaps by providing a general bootstrapping
transformation. It remains open to construct ABE for other models of computation such
as Turing machines and RAM programs from standard assumptions. It also remains open
to construct ciphertext-policy attribute based encryption with unbounded size predicates
– where the ciphertext is associated with a predicate 𝑃 and message 𝑚, and the secret
key is associated with attributes a. Using our construction, it is possible to realize only
a-priori bounded ciphertext-policy attribute based encryption (that is, the description of the
predicates must be a-priori bounded by the setup).
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Chapter 4

Predicate Encryption for Circuits

Predicate encryption [BW07, SBC+07, KSW08] is a new paradigm for public-key encryption
that supports searching on encrypted data. In predicate encryption, ciphertexts are
associated with descriptive attribute values 𝑎 in addition to plaintexts 𝑚, secret keys are
associated with a predicate 𝑃 , and a secret key decrypts the ciphertext to recover 𝑚 if and
only if 𝑃 (𝑎) = 1. The security requirement for predicate encryption enforces privacy of 𝑎
and the plaintext even amidst multiple secret key queries: an adversary holding secret keys
for different query predicates learns nothing about the attribute 𝑎 and the plaintext if none
of them is individually authorized to decrypt the ciphertext.

Motivating applications. We begin with several motivating applications for predicate
encryption [BW07, SBC+07]:

∙ For inspecting recorded log files for network intrusions, we would encrypt network
flows labeled with a set of attributes from the network header, such as the source and
destination addresses, port numbers, time-stamp, and protocol numbers. We could
then issue auditors with restricted secret keys that can only decrypt the network flows
that fall within a particular range of IP addresses and some specific time period.

∙ For credit card fraud investigation, we would encrypt credit card transactions labeled
with a set of attributes such as time, costs and zipcodes. We could then issue
investigators with restricted secret keys that decrypt transactions over $1,000 which
took place in the last month and originated from a particular range of zipcodes.

∙ For anti-terrorism investigation, we would encrypt travel records labeled with a set
of attributes such as travel destination and basic traveller data. We could then issue
investigators with restricted secret keys that match certain suspicious travel patterns.

∙ For online dating, we would encrypt personal profiles labeled with dating preferences
pertaining to age, height, weight, salary and hobbies. Secret keys are associated with
specific attributes and can only decrypt profiles for which the attributes match the
dating preferences.
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In all of these examples, it is important that unauthorized parties do not learn the contents
of the ciphertexts, nor of the meta-data associated with the ciphertexts, such as the network
header or dating preferences. On the other hand, it is often okay to leak the meta-data
to authorized parties. We stress that privacy of the meta-data is an additional security
requirement provided by predicate encryption but not by the related and weaker notion of
attribute-based encryption (ABE) [SW05, GPSW06]; the latter only guarantees the privacy
of the plaintext 𝑚 and not the attribute 𝑎.

Utility and expressiveness. The utility of predicate encryption is intimately related to
the class of predicates for which we could create secret keys. Ideally, we would like to support
the class of all circuits. Over the past decade, substantial advances were made for the weaker
primitive of ABE, culminating most recently in schemes supporting any policy computable by
general circuits [GVW13, BGG+14] under the standard LWE assumption [Reg09]. However,
the state-of-the-art for predicate encryption is largely limited to very simple functionalities
related to computing an inner product [BW07, SBC+07, KSW08, AFV11, GMW15].

4.1 Our Contributions, Techniques and Related Work

Our Contributions. In this work, we substantially advance the state of the art to obtain
predicate encryption for all circuits:

Theorem (informal). Under the LWE assumption, there exists a predicate
encryption scheme for all circuits, with succint ciphertexts and secret keys
independent of the size of the circuit.

As with prior LWE-based ABE for circuits [GVW13, BGG+14], to support circuits of depth
𝑑, the parameters of the scheme grow with poly(𝑑), and we require sub-exponential 𝑛Ω(𝑑)

hardness of the LWE assumption. In addition, the security guarantee is selective, but can
be extended to adaptive security via complexity leveraging [BB04].

Privacy guarantees. The privacy notion we achieve is a simulation-based variant of
“attribute-hiding” from the literature [SBC+07, OT10, AFV11]. That is, we guarantee
privacy of the attribute 𝑎 and the plaintext 𝑚 against collusions holding secret keys for
predicates 𝑃 such that 𝑃 (𝑎) = 0. An even stronger requirement would be to require privacy
of 𝑎 even against authorized keys corresponding to predicates 𝑃 where 𝑃 (𝑎) = 1; in the
literature, this stronger notion is referred to as “full attribute-hiding” [BW07, KSW08]. This
stronger requirement is equivalent to “full-fledged” functional encryption [BSW11], for which
we cannot hope to achieve simulation-based security for all circuits as achieved in this work
[BSW11, AGVW13].

Relation to prior works. Our result subsumes all prior works on predicate encryption
under standard cryptographic assumptions, apart from a few exceptions pertaining to
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the inner product predicate [BW07, KSW08, OT12a]. These results achieve a stronger
security notion for predicate encryption, known as full (or strong) security (please refer to
Sections 4.3.1, 4.2.1 for definitions).

In a recent break-through work, Garg et al. [GGH+13b] gave a beautiful candidate
construction of functional encryption (more general primitive than predicate encryption)
for arbitrary circuits. However, the construction relies on “multi-linear maps” [GGH13a,
CLT13, GGH15], for which we have few candidates and which rely on complex intractability
assumptions that are presently poorly understood and not extensively studied in the
literature. It remains an intriguing open problem to construct a functional encryption scheme
from a standard assumption, such as LWE.

In contrast, if we consider functional encryption with a-priori bounded collusions size
(that is, the number of secret keys any collusion of adversaries may obtain is fixed by the
scheme at the setup phase), then it is possible to obtain functional encryption for general
circuits under a large class of standard assumptions [SS10a, GVW12, GKP+13b]. This
notion is weaker than standard notion of functional encryption, yet remains very meaningful
for many applications.

4.1.1 Overview of Our Construction

Our starting point is the work of Goldwasser, Kalai, Popa, Vaikuntanathan and Zel-
dovich [GKP+13b] who show how to convert an attribute-based encryption (ABE) scheme
into a single key secure functional encryption (FE) scheme. Recall that in an attribute-
based encryption scheme [GPSW06], a ciphertext is associated with a descriptive value
(a public “attribute”) 𝑎 and plaintext 𝑚, and it hides 𝑚, but not 𝑎. The observation
of Goldwasser et al. [GKP+13b] is to hide 𝑎 by encrypting it using a fully homomorphic
encryption (FHE) scheme [Gen09, BV11b], and then using the resulting FHE ciphertext as
the public “attribute” in an ABE scheme for general circuits [GVW13, BGG+14]. This has
the dual benefit of guaranteeing privacy of 𝑎, while at the same time allowing homomorphic
computation of predicates 𝑃 on the encryption of 𝑎.

This initial idea quickly runs into trouble. The decryptor who is given the predicate secret
key for 𝑃 and a predicate encryption of (𝑎,𝑚) can indeed compute an FHE encryption of
𝑃 (𝑎). However, the decryption process is confronted with a decision, namely whether to
release the message 𝑚 or not, and this decision depends on whether the plaintext 𝑃 (𝑎) is 0
or 1.1 Clearly, resolving this conundrum requires obtaining 𝑃 (𝑎), which requires knowledge
of the FHE secret key. Goldwasser et al. [GKP+13b] solved this by employing a (single use)
Yao garbling of the FHE decryption circuit, however this limited them to obtaining single
key secure predicate/functional encryption schemes.2

1In fact, there is a syntactic mismatch since 𝑃 (·) is not a predicate, as it outputs an FHE ciphertext.
2A reader familiar with [GKP+13b] might wonder whether replacing single-use garbled circuits in their

construction with reusable garbled circuits (also from [GKP+13b]) might remove this limitation. We remark
that this does not seem possible, essentially because the construction in [GKP+13b] relies crucially on the
simplicity of computing garbled inputs from the “garbling key”. In particular, in Yao’s garbled circuit scheme,
the garbling key is (many) pairs of “strings” 𝐿0 and 𝐿1, and a garbling of an input bit 𝑏 is simply 𝐿𝑏. This fits
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Our first key idea is to embed the FHE secret key as part of the attributes in the ABE
ciphertext. That is, in order to encrypt a plaintext 𝑚 with attributes 𝑎 in the predicate
encryption scheme, we first choose a symmetric key fhe.sk for the FHE scheme, encrypt
𝑎 into a FHE ciphertext 𝑎̂, and encrypt 𝑚 using the ABE scheme with (fhe.sk, 𝑎̂) as the
attributes to obtain an ABE ciphertext ct. Our predicate encryption ciphertext is then
given by

(𝑎̂, ct)

To generate the predicate secret key for a predicate 𝑃 , one simply generates the ABE secret
key for the function 𝑔 that takes as input (fhe.sk, 𝑎̂) and computes

𝑔(fhe.sk, 𝑎̂) = FHE.Dec(fhe.sk;FHE.Eval(𝑃, 𝑎̂))

That is, 𝑔 first homomorphically computes a FHE encryption of 𝑃 (𝑎), and then decrypts it
using the FHE secret key to output 𝑃 (𝑎).

At first glance, this idea evokes strong and conflicting emotions as it raises two problems.
The first pertains to correctness: we can no longer decrypt the ciphertext since the ABE
decryption algorithm needs to know all of the attributes (𝑎̂ and fhe.sk), but fhe.sk is missing.
The second pertains to security: the ABE ciphertext ct is not guaranteed to protect the
privacy of the attributes, and could leak all of fhe.sk which together with 𝑎̂ would leak all of
𝑎. Solving both of these problems seems to require designing a predicate encryption scheme
from scratch!

Our next key observation is that the bulk of the computation in 𝑔, namely the
homomorphic evaluation of the predicate 𝑃 , is performed on the public attribute 𝑎̂. The
only computation performed on the secret value fhe.sk is FHE decryption which is a fairly
lightweight computation. In particular, with all known FHE schemes [Gen09, BV11b, BV11a,
BGV12, GSW13, BV14, AP14], decryption corresponds to computing an inner product
followed by a threshold function. Furthermore, we do know how to construct lattice-based
predicate encryption schemes for threshold of inner product [AFV11, GMW15]. We stress
that the latter do not correspond to FHE decryption since the inner product is computed over
a vector in the ciphertext and one in the key, whereas FHE decryption requires computing
an inner product over two vectors in the ciphertext; nonetheless, we will build upon the
proof techniques in achieving attribute-hiding in [AFV11, GMW15] in the proof of security.

In other words, if we could enhance ABE with a modicum of secrecy so that it can perform
a heavyweight computation on public attributes followed by a lightweight privacy-preserving
computation on secret attributes, we are back in business. Our first contribution is to define
such an object, that we call partially hiding predicate encryption.

perfectly with the semantics of ABE (rather, a variant termed two-input ABE in [GKP+13b]) that releases
one of two possible “messages” 𝐿0 or 𝐿1 depending on the outcome of a computation. In contrast, computing
a garbled input in the reusable garbling scheme is a more complex and randomized function of the garbling
key, and does not seem to align well with the semantics of ABE.
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Partially Hiding Predicate Encryption. We introduce the notion of partially hiding
predicate encryption (PHPE), an object that interpolates between attribute-based encryp-
tion and predicate encryption (analogously to partial garbling in [IW14]). In PHPE, the
ciphertext, encrypting message 𝑚, is associated with an attribute (𝑥, 𝑦) where 𝑥 is private
but 𝑦 is always public. The secret key is associated with a function 𝑓 , and decryption succeeds
iff 𝑓(𝑥, 𝑦) = 1. On the one extreme, considering a dummy 𝑥 or functions 𝑓 that ignore 𝑥
and compute on 𝑦, we recover attribute-based encryption. On the other end, considering a
dummy 𝑦 or functions 𝑓 that ignore 𝑦 and compute on 𝑥, we recover predicate encryption.

We will be interested in realizing PHPE for functions 𝜑 of the form 𝜑(𝑥, 𝑦) = 𝑔(𝑥, ℎ(𝑦))
for some functions 𝑔 and ℎ where ℎ may perform arbitrary heavy-weight computation on
the public 𝑦 and 𝑔 only performs light-weight computation on the private 𝑥. Mapping back
to our discussion, we would like to achieve PHPE for the “evaluate-then-decrypt” class of
functions, namely where 𝑔 is the FHE decryption function, ℎ is the FHE evaluation function,
𝑥 is the FHE secret key, and 𝑦 is the FHE ciphertext. In general, we would like 𝑔 to be
simple and will allow ℎ to be complex. It turns out that we can formalize the observation
above, namely that PHPE for this class of functions gives us a predicate encryption scheme.
The question now becomes: can we construct PHPE schemes for the “evaluate-then-decrypt”
class of functions?

Assuming the subexponential hardness of learning with errors (LWE), we show how to
construct a partially hiding predicate encryption for the class of functions 𝑓 : Z𝑡

𝑞×{0, 1}ℓ →
{0, 1} of the form

𝑓𝛾(x,y) = IP𝛾(x, ℎ(y)),

where ℎ : {0, 1}ℓ → {0, 1}𝑡, 𝛾 ∈ Z𝑞, and IP𝛾(x, z) = 1 iff ⟨x, z⟩ =

(︂∑︀
𝑖∈[𝑡] x[𝑖] · z[𝑖]

)︂
= 𝛾

mod 𝑞.
This is almost what we want, but not quite. Recall that FHE decryption in many recent

schemes [BV11b, BGV12, GSW13, BV14, AP14] is a function that checks whether an inner
product of two vectors in Z𝑡

𝑞 (one of which could be over {0, 1}𝑡) lies in a certain range.
Indeed, if z ∈ {0, 1}𝑡 is an encryption of 1 and x ∈ Z𝑡

𝑞 is the secret key, we know that
⟨x, z⟩ ∈ [𝑞/2 − 𝐵, 𝑞/2 + 𝐵] (mod 𝑞), where 𝐵 is the noise range. Applying the so-called
“modulus reduction” [BV11b] transformation to all these schemes, we can assume that this
range is polynomial in size.

In other words, we will manage to construct a partially hiding PE scheme for the function

𝑓𝛾(x,y) : ⟨x, ℎ(y)⟩ ?
= 𝛾 (mod 𝑞)

whereas we need a partially hiding PE scheme for the FHE decryption function which is

𝑓 ′𝑅(x,y) : ⟨x, ℎ(y)⟩
?
∈ 𝑅 (mod 𝑞)

where 𝑅 is the polynomial size range [𝑞/2 − 𝐵, 𝑞/2 + 𝐵] from above. How do we reconcile
this disparity?
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The “Lazy OR” Trick. The solution, called the “lazy OR trick” [SBC+07, GMW15] is to
publish secret keys for all functions 𝑓𝛾 for 𝛾 ∈ 𝑅 := [𝑞/2−𝐵, 𝑞/2+𝐵]. This will indeed allow
us to test if the FHE decryption of the evaluated ciphertext is 1 (and reveal the message 𝑚
if it is), but it is also worrying. Publishing these predicate secret keys for the predicates 𝑓𝛾
reveals more information than whether ⟨x, ℎ(y)⟩

?
∈ 𝑅. In particular, it reveals what ⟨x, ℎ(y)⟩

is. This means that an authorized key would leak partial information about the attribute,
which we do allow for predicate encryption. On the other hand, for an unauthorized key
where the FHE decryption is 0, each of these 𝑓𝛾, 𝛾 ∈ 𝑅 is also an unauthorized key in the
PHPE and therefore leaks no information about the attribute. This extends to the collection
of keys in 𝑅 since the PHPE is secure against collusions. For simplicity, we assume in the
rest of this overview that FHE decryption corresponds to exactly to inner product.

Asymmetry to the Rescue: Constructing Partially Hiding PE. Our final contri-
bution is the construction of a partially hiding PE for the function class 𝑓𝛾(x,y) above. We
will crucially exploit the fact that 𝑓𝛾 computes an inner product on the private attribute x.
There are two challenges here: first, we need to design a decryption algorithm that knows 𝑓𝛾
and y but not x (this is different from decryption in ABE where the algorithm also knows
x); second, show that the ciphertext does not leak too much information about x. We use
the fully key-homomorphic encryption techniques developed by Boneh et al [BGG+14] in
the context of constructing an “arithmetic” ABE scheme. The crucial observation about
the ABE scheme of [BGG+14] is that while it was not designed to hide the attributes, it
can be made to partially hide them in exactly the way we want. In particular, the scheme
allows us to carry out an inner product of a public attribute vector (corresponding to the
evaluated FHE ciphertext) and a private attribute vector (corresponding to the FHE secret
key fhe.sk), thanks to an inherent asymmetry in homomorphic evaluation of a multiplication
gate on ABE ciphertexts. More concretely, in the homomorphic evaluation of a ciphertext
for a multiplication gate in [BGG+14], the decryption algorithm works even if one of the
attribute remains private, and for addition gates, the decryption algorithms works even if
both attributes remain private. This addresses the first challenge of a decryption algorithm
that is oblivious to x. For the second challenge of security, we rely on techniques from inner
product predicate encryption [AFV11] to prove the privacy of x Note that in the latter, the
inner product is computed over a vector in the ciphertext and one in the key, whereas in our
scheme, the inner product is computed over two vectors in the ciphertext. Interestingly, the
proof still goes through since the ciphertext in the ABE [BGG+14] has the same structure
as the ciphertext in [AFV11]. We refer the reader to Section 4.3.2 for a detailed overview
of the partial hiding PE, and to Section 4.6 for an overview of how we combine the partial
hiding PE with FHE to obtain our main result.

Finally, we remark that exploiting asymmetry in multiplication has been used in fairly
different contexts in both FHE [GSW13, BV14] and in ABE [GVW13, GV14]. In [GSW13]
and in this work, the use of asymmetry was crucial for realizing the underlying cryptographic
primitive; whereas in [GVW13, BV14, GV14], asymmetry was used to reduce the noise
growth during homomorphic evaluation, thereby leading to quantitative improvements in
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the underlying assumptions and hence improved efficiency.

4.1.2 Discussion

Comparison with other approaches. The two main alternative approaches for realizing
predicate and functional encryption both rely on multi-linear maps either implicitly, or
explicitly. The first is to use indistinguishability obfuscation as in [GGH+13b], and the second
is to extend the dual system encryption framework to multi-linear maps [Wat09, GGHZ14].
A crucial theoretical limitation of these approaches is that they all rely on non-standard
assumptions; we have few candidates for multi-linear maps [GGH13a, CLT13, GGH15] and
the corresponding assumptions are presently poorly understood and not extensively studied
in cryptanalysis, and in some cases, broken [CLT14]. In particular, the latest attack in
[CLT14] highlight the importance of obtaining constructions and developing techniques that
work under standard cryptographic assumptions, as is the focus of this work.

Barriers to functional encryption from LWE. We note the two main barriers to
achieving full-fledged functional encryption from LWE using our framework. First, the lazy
conjunction approach to handle threshold inner product for FHE decryption leaks the exact
inner product and therefore cannot be used to achieve full attribute-hiding. Second, we
do not currently know of a fully attribute-hiding inner product encryption scheme under
the LWE assumption, although we do know how to obtain such schemes under standard
assumptions in bilinear groups [OT12a, KSW08].

4.1.3 Chapter Organization

In Section 5.2 we provide preliminaries needed for our construction, such as fully-
homomorphic encryption. In Section 4.3 we present syntax of partially-hiding predicate
encryption and show how to instantiate it from lattices in Sections 4.4, 4.5. In Section 4.6,
we present a construction of predicate encryption for circuits from partially-hiding predicate
encryption and fully-homomorphic encryption. In Section 4.7, we summarize and provide
some open problems.

4.2 Preliminaries

4.2.1 Predicate Encryption

We present the definitions of predicate encryption for general circuits [BW07, KSW08,
AFV11]. A predicate encryption scheme 𝒫ℰ with respect to an attribute universe 𝒜, predi-
cate universe 𝒞 and a message universeℳ consists of four algorithms (Setup,Enc,KeyGen,Dec):
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Setup(1𝜆, 1𝑘, 𝑑) → (mpk,msk). The setup algorithm gets as input the security parameter
𝜆, the length of the attributes 𝑘 and the maximum depth 𝑑 and outputs the public
parameter mpk, and the master key msk.

Enc(mpk, 𝑎,𝑚)→ ct. The encryption algorithm gets as input mpk, an attribute 𝑎 ∈ 𝒜 and
a message 𝑚 ∈ℳ. It outputs a ciphertext ct.

KeyGen(msk, 𝐶) → sk𝐶 . The key generation algorithm gets as input msk and a predicate
𝐶 ∈ 𝒞. It outputs a secret key sk𝐶 .

Dec(sk𝐶 , ct) → 𝑚. The decryption algorithm gets as input sk𝐶 and a ciphertext ct. It
outputs a message 𝑚.

Correctness. We require that for all (𝑎, 𝐶) ∈ 𝒜× 𝒞 such that 𝐶(𝑎) = 1 and all 𝑚 ∈ℳ,

Pr

[︂
sk𝐶 ← KeyGen(msk, 𝐶), ct← Enc(mpk, 𝑎,𝑚);Dec(sk𝐶 , ct) = 𝑚

]︂
≥ 1− negl(𝜆)

And for all (𝑎, 𝐶) ∈ 𝒜× 𝒞 such that 𝐶(𝑎) = 0 and all 𝑚 ∈ℳ,

Pr

[︂
sk𝐶 ← KeyGen(msk, 𝐶), ct← Enc(mpk, 𝑎,𝑚);Dec(sk𝐶 , ct) =⊥

]︂
≥ 1− negl(𝜆)

where the probability is taken over (mpk,msk) ← Setup(1𝜆, 1𝑘, 𝑑) and the coins of
Enc,KeyGen.

4.2.2 Security Model

Definition 4.2.1 (SIM-AH). For every stateful p.p.t. adversary Adv, and a p.p.t. simulator
Sim, consider the following two experiments:

expreal
𝒫ℰ,Adv(1𝜆): expideal

𝒫ℰ,Sim(1𝜆):

1: 𝑎←Adv(1𝜆)
2: (mpk,msk)← Setup(1𝜆, 1𝑘, 𝑑)
3: 𝑚←AdvKeyGen(msk,·)(mpk)
4: ct← Enc(mpk, 𝑎,𝑚)
5: 𝛼← AdvKeyGen(msk,·)(ct)
6: Output (𝑎,𝑚, 𝛼)

1: 𝑎←Adv(1𝜆)
2: (mpk,msk)← Setup(1𝜆, 1𝑘, 𝑑)
3: 𝑚←AdvKeyGen(msk,·)(mpk)
4: ct← Sim(mpk, 1|𝑎|, 1|𝑚|)
5: 𝛼←AdvKeyGen(msk,·)(ct)
6: Output (𝑎,𝑚, 𝛼)

We say an adversary Adv is admissible if for all oracle queries that it makes 𝐶 ∈ 𝒞, 𝐶(𝑎) = 0.
The Predicate Encryption scheme 𝒫ℰ is then said to be simulation-based attribute-hiding
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(SIM-AH) if there is a p.p.t. simulator Sim such that for every stateful p.p.t. adversary
Adv, the following two distributions are computationally indistinguishable:{︂

expreal
𝒫ℰ,Adv(1𝜆)

}︂
𝜆∈N

𝑐
≈

{︂
expideal

𝒫ℰ,Sim(1𝜆)

}︂
𝜆∈N

4.2.3 Relations to Other Security Models

Single Message Implies Many Message Security. We point out a simple composition
result for our definition. The definition for many message security remains virtually identical,
except the adversary declares a list of tuples (𝑎𝑖,𝑚𝑖) for which it sees either real or simulated
ciphertexts. Given a one-message simulator Sim1, we can construct a many message
simulator Sim𝑚 which just invokes the one-message simulator to simulate each ciphertext
independently. The security follows via the standard hybrid argument and crucially relies
on the fact that the adversary is restricted to queries that do not allow to decrypt. Similar
result follows for partially hiding predicate encryption.

Impossibility of Strong-Simulation Security We point out the many-messages strong-
simulation security is impossible to realize. In the strong-simulation security (or strong
attribute hiding (SAH)), the adversary is allowed to query for secret keys that allow to
decrypt. The simulator is given the result oracle access to functionality that returns the
outputs of the predicates.

Definition 4.2.2 (Many-Messages SIM-SAH). For every stateful p.p.t. adversary Adv, and
a p.p.t. simulator Sim, consider the following two experiments:

expreal
𝒫ℰ,Adv(1𝜆): expideal

𝒫ℰ,Sim(1𝜆):

1: −→𝑎←Adv(1𝜆)

2: (mpk,msk)← Setup(1𝜆, 1𝑘, 𝑑)

3: −→𝑚←AdvKeyGen(msk,·)(mpk)

4:
−→
ct ← Enc(mpk,−→𝑎 ,−→𝑚)

5: 𝛼← AdvKeyGen(msk,·)(
−→
ct)

6: Output (−→𝑎 ,−→𝑚,𝛼)

1: −→𝑎←Adv(1𝜆)

2: (mpk,msk)← Setup(1𝜆, 1𝑘, 𝑑)

3: −→𝑚←AdvKeyGen(msk,·)(mpk)

4:
−→
ct ← Sim𝑂(·)(mpk, 1|𝑎𝑖|, 1|𝑚𝑖|)

5: 𝛼←Adv𝑂′(msk,·)(
−→
ct)

6: Output (−→𝑎 ,−→𝑚,𝛼)

Where the oracles are defines as:

∙ 𝑂(𝐶): returns a list (𝐶(𝑎𝑖), 𝑏𝑖) (for all 𝑖 ∈ |−→𝑎 |) where 𝑏𝑖 = 𝑚𝑖 if 𝐶(𝑎𝑖) = 1 and 𝑏𝑖 =⊥
otherwise. In words, it returns the results of the decryption queries that the adversary
should learn by the correctness of the scheme.
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∙ 𝑂′(msk, 𝐶): is the second stage of the simulator, namely Sim𝑂(·)(msk). It is given
access to the same oracle that returns results of the decryption queries that must be
satisfied by the correctness.

We say the simulator is admissible if it queries its oracle 𝑂(·) on the identical ordered set of
queries issued by Adv. The Predicate Encryption scheme 𝒫ℰ is then said to be simulation-
based strong attribute-hiding for many-messages if there is an admissible stateful p.p.t.
simulator Sim such that for every admissible stateful p.p.t. adversary Adv, the following
two distributions are computationally indistinguishable:{︂

expreal
𝒫ℰ,Adv(1𝜆)

}︂
𝜆∈N

𝑐
≈

{︂
expideal

𝒫ℰ,Sim(1𝜆)

}︂
𝜆∈N

The impossibility of this notion follows from the compression arguments of [BSW11,
AGVW13]. In particular, consider an adversary that outputs a random list of messages −→𝑚
and arbitrary identities −→𝑎 . It sets the lengths of these lists to be much greater than the
length of secret keys of the scheme. Then, upon receiving the challenge ciphertext, it asks
for a query that allows to decrypt all messages. The simulator, on the other side, must first
commit to a long string −→ct and then later fake a short secret key that must decrypt the entire
ciphertext correctly, which is impossible by the standard information theoretic argument.

4.2.4 Indistinguishability Security of PE

For comparison, we include here the indistinguishability-based formulation of selective,
weakly attribute-hiding predicate encryption.

Definition 4.2.3 (IND-AH). For a stateful adversary 𝒜, we define the advantage function

Advpe𝒜 (𝜆) := Pr

⎡⎢⎢⎢⎢⎢⎢⎣𝛽 = 𝛽′ :

(𝑥0, 𝑥1)← 𝒜(1𝜆);

𝛽
$← {0, 1};

(mpk,msk)← Setup(1𝜆, 1𝑘, 𝑑);
(𝑚0,𝑚1)← 𝒜KeyGen(msk,·)(mpk);
ct← Enc(mpk, 𝑥𝛽,𝑚𝛽);
𝛽′ ← 𝒜KeyGen(msk,·)(ct)

⎤⎥⎥⎥⎥⎥⎥⎦−
1

2

with the restriction that all queries 𝐶 that 𝒜 makes to KeyGen(msk, ·) satisfies 𝐶(𝑥0) =
𝐶(𝑥1) = 0 (that is, sk𝐶 does not decrypt ct). A predicate encryption scheme is selectively
secure if for all PPT adversaries 𝒜, the advantage Advpe𝒜 (𝜆) is a negligible function in 𝜆.

4.2.5 Fully-Homomorphic Encryption

We present a fairly minimal definition of fully homomorphic encryption (FHE) which is
sufficient for our constructions. A leveled homomorphic encryption scheme is a tuple of
polynomial-time algorithms (HE.KeyGen,HE.Enc,HE.Eval,HE.Dec):
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∙ Key generation. HE.KeyGen(1𝜆, 1𝑑, 1𝑘) is a probablistic algorithm that takes as input
the security parameter 𝜆, a depth bound 𝑑 and message length 𝑘 and outputs a secret
key sk.

∙ Encryption. HE.Enc(sk,𝑚) is a probabilistic algorithm that takes as input sk and a
message 𝑚 ∈ {0, 1}𝑘 and outputs a ciphertext ct.

∙ Homomorphic evaluation. HE.Eval(𝑓, ct) is a deterministic algorithm that takes as
input a boolean circuit 𝐶 : {0, 1}𝑘 → {0, 1} of depth at most 𝑑 and a ciphertext ct and
outputs another ciphertext ct′.

∙ Decryption. HE.Dec(sk, ct′) is a deterministic algorithm that takes as input sk and
ciphertext ct′ and outputs a bit.

Correctness. We require perfect decryption correctness with respect to homomorphically
evaluated ciphertexts: namely for all 𝜆, 𝑑, 𝑘 and all sk ← HE.KeyGen(1𝜆, 1𝑑, 1𝑘), all 𝑚 ∈
{0, 1}𝑘 and for all boolean circuits 𝐶 : {0, 1}𝑘 → {0, 1} of depth at most 𝑑:

Pr
[︁
HE.Dec(sk, HE.Eval(𝐶, HE.Enc(sk,𝑚))) = 𝐶(𝑚)

]︁
= 1

where the probablity is taken over HE.Enc and HE.KeyGen.

Security. We require semantic security for a single ciphertext: namely for every stateful
p.p.t. adversary 𝒜 and for all 𝑑, 𝑘 = poly(𝜆), the following quantity

Pr

⎡⎢⎢⎢⎢⎣𝑏 = 𝑏′ :

sk← Setup(1𝜆, 1𝑑, 1𝑘);
(𝑚0,𝑚1)← 𝒜(1𝜆, 1𝑑, 1𝑘);

𝑏
$← {0, 1};

ct← Enc(sk,𝑚𝑏);
𝑏′ ← 𝒜(ct)

⎤⎥⎥⎥⎥⎦− 1

2

is negligible in 𝜆.

4.2.6 FHE from LWE

We will rely on an instantiation of FHE from the LWE assumption:

Theorem 4.2.1 (FHE from LWE [BV11b, BGV12, GSW13, BV14, AP14]). There is a FHE
scheme HE.KeyGen,HE.Enc,HE.Eval,HE.Dec that works for any 𝑞 with 𝑞 ≥ 𝑂(𝜆2) with the
following properties:

∙ HE.KeyGen outputs a secret key sk ∈ Z𝑡
𝑞 where 𝑡 = poly(𝜆);

∙ HE.Enc outputs a ciphertext ct ∈ {0, 1}ℓ where ℓ = poly(𝑘, 𝑑, 𝜆, log 𝑞);
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∙ HE.Eval outputs a ciphertext ct′ ∈ {0, 1}𝑡;

∙ for any boolean circuit of depth 𝑑, HE.Eval(𝐶, ·) is computed by a boolean circuit of
depth poly(𝑑, 𝜆, log 𝑞).

∙ HE.Dec on input sk, ct′ outputs a bit 𝑏 ∈ {0, 1}. If ct′ is an encryption of 1 then

𝑡∑︁
𝑖=1

sk[𝑖] · ct′[𝑖] ∈ [⌊𝑞/2⌋ −𝐵, ⌊𝑞/2⌋+𝐵]

for some fixed 𝐵 = poly(𝜆). Otherwise, if ct′ is an encryption of 0, then

𝑡∑︁
𝑖=1

sk[𝑖] · ct′[𝑖] /∈ [⌊𝑞/2⌋ −𝐵, ⌊𝑞/2⌋+𝐵];

∙ security relies on dLWEΘ(𝑡),𝑞,𝜒.

We highlight several properties of the above scheme: (1) the ciphertext is a bit-string,
(2) the bound 𝐵 is a polynomial independent of 𝑞 (here, we crucially exploit the new results
in [BV14] together with the use of leveled bootstrapping)3, (3) the size of normal ciphertexts
is independent of the size of the circuit (this is the typical compactness requirement).

4.3 Partially Hiding Predicate Encryption

4.3.1 Definitions

We introduce the notation of partially hiding predicate encryption (PHPE), which interpo-
lates attribute-based encryption and predicate encryption (analogously to partial garbling
in [IW14]). In PHPE, the ciphertext, encrypting message 𝑚, is associated with an attribute
(𝑥, 𝑦) where 𝑥 is private but 𝑦 is always public. The secret key is associated with a predicate
𝐶, and decryption succeeds iff 𝐶(𝑥, 𝑦) = 1. The requirement is that a collusion learns nothing
about (𝑥,𝑚) if none of them is individually authorized to decrypt the ciphertext. Attribute-
based encryption corresponds to the setting where 𝑥 is empty, and predicate encryption
corresponds to the setting where 𝑦 is empty. We refer the reader to Section 4.2.1 for the
standard notion of predicate encryption.

Looking ahead to our construction, we show how to:

∙ construct PHPE for a restricted class of circuits that is “low complexity” with respect
to 𝑥 and allows arbitrarily polynomial-time computation on 𝑦;

∙ bootstrap this PHPE using FHE to obtain PE for all circuits.

3Recall that no circular security assumption needs to be made for leveled bootstrapping.
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Syntax. A Partially-Hiding Predicate Encryption scheme 𝒫ℋ𝒫ℰ for a pair of input-
universes 𝒳 ,𝒴 , a predicate universe 𝒞, a message space ℳ, consists of four algorithms
(PH.Setup,PH.Enc, PH.KeyGen,PH.Dec):

PH.Setup(1𝜆, 1𝑡, 1ℓ, 𝑑) → (ph.mpk, ph.msk). The setup algorithm gets as input the security
parameter 𝜆, the lengths of private/public attributes 𝑡, ℓ and the maximum circuit
depth 𝑑, and outputs the public parameter ph.mpk, and the master key ph.msk.

PH.Enc(ph.mpk, (𝑥, 𝑦),𝑚) → ct𝑦. The encryption algorithm gets as input ph.mpk, an
attribute (𝑥, 𝑦) ∈ 𝒳 × 𝒴 and a message 𝑚 ∈ℳ. It outputs a ciphertext ct𝑦.

PH.KeyGen(ph.msk, 𝐶) → sk𝐶 . The key generation algorithm gets as input ph.msk and a
predicate 𝐶 ∈ 𝒞. It outputs a secret key sk𝐶 .

PH.Dec(sk𝐶 , (ct𝑦, 𝑦))→ 𝑚. The decryption algorithm gets as input the secret key sk𝐶 , and
a ciphertext ct𝑦 and the public part of the attribute 𝑦. It outputs a message 𝑚 ∈ ℳ
or ⊥.

Correctness. We require that for all PH.Setup(1𝜆, 1𝑡, 1ℓ, 𝑑) → (ph.mpk, ph.msk), for all
(𝑥, 𝑦, 𝐶) ∈ 𝒳 × 𝒴 × 𝒞, for all 𝑚 ∈ℳ,

∙ if 𝐶(𝑥, 𝑦) = 1,

Pr

[︂
PH.Dec(sk𝐶 , (ct𝑦, 𝑦)) = 𝑚

]︂
≥ 1− negl(𝜆),

∙ if 𝐶(𝑥, 𝑦) = 0,

Pr

[︂
PH.Dec(sk𝐶 , (ct𝑦, 𝑦)) =⊥

]︂
≥ 1− negl(𝜆),

where the probabilities are taken over sk𝐶 ← PH.KeyGen(ph.msk, 𝐶), ct𝑦 ← PH.Enc(ph.mpk, (𝑥, 𝑦),𝑚)
and coins of PH.Setup.

Definition 4.3.1 (PHPE Attribute-Hiding). Fix (PH.Setup,PH.Enc,PH.KeyGen, PH.Dec).
For every stateful p.p.t. adversary Adv, and a p.p.t. simulator Sim, consider the following
two experiments:

expreal
𝒫ℋ𝒫ℰ,Adv(1𝜆): expideal

𝒫ℋ𝒫ℰ,Sim(1𝜆):

1: (𝑥, 𝑦)← Adv(1𝜆, 1𝑡, 1ℓ, 𝑑)
2: (ph.mpk, ph.msk)←

PH.Setup(1𝜆, 1𝑡, 1ℓ, 𝑑)
3: 𝑚← AdvPH.KeyGen(msk,·)(ph.mpk)
4: ct𝑦 ← PH.Enc(ph.mpk, (𝑥, 𝑦),𝑚)

5: 𝛼← AdvPH.KeyGen(ph.msk,·)(ct𝑦)
6: Output (𝑥, 𝑦,𝑚, 𝛼)

1: (𝑥, 𝑦)← Adv(1𝜆, 1𝑡, 1ℓ, 𝑑)
2: (ph.mpk, ph.msk)←

PH.Setup(1𝜆, 1𝑡, 1ℓ, 𝑑)
3: 𝑚← AdvPH.KeyGen(ph.msk,·)(ph.mpk)
4: ct𝑦 ← Sim(mpk, 𝑦, 1|𝑥|, 1|𝑚|)

5: 𝛼← AdvPH.KeyGen(msk,·)(ct𝑦)
6: Output (𝑥, 𝑦,𝑚, 𝛼)
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We say an adversary Adv is admissible if all oracle queries that it makes 𝐶 ∈ 𝒞 satisfy
𝐶(𝑥, 𝑦) = 0. The Partially-Hiding Predicate Encryption scheme 𝒫ℋ𝒫ℰ is then said to be
attribute-hiding if there is a p.p.t. simulator Sim such that for every stateful p.p.t. adversary
Adv, the following two distributions are computationally indistinguishable:{︂

expreal
𝒫ℋ𝒫ℰ,Adv(1𝜆)

}︂
𝜆∈N

𝑐
≈

{︂
expideal

𝒫ℋ𝒫ℰ,Sim(1𝜆)

}︂
𝜆∈N

Remarks. We point out some remarks of our definition (SIM-AH) and how it compares
to other definitions in the literature.

∙ We note the simulator for the challenge ciphertext gets 𝑦 but not 𝑥; this captures
the fact that 𝑦 is public whereas 𝑥 is private. In addition, the simulator is not
allowed to program the public parameters or the secret keys. In the ideal experiment,
the simulator does not explicitly learn any information about 𝑥 (apart from its
length); nonetheless, there is implicit leakage about 𝑥 from the key queries made by
an admissible adversary. Finally, we note that we can efficiently check whether an
adversary is admissible.

∙ Our security notion is “selective”, in that the adversary “commits” to (𝑥, 𝑦) before it
sees ph.mpk. It is possible to bootstrap selectively-secure scheme to full security using
standard complexity leveraging arguments [BB04, GVW13], at the price of a 2|𝑥| loss
in the security reduction.

∙ Our definition refers to a single challenge message, but the definition extends readily to
a setting with multiple challenge messages. Moreover, our definition composes in that
security for a single message implies security with multiple messages (see Section 4.2.3).
The following remarks refer to many messages setting.

∙ We distinguish between two notions of indistinguishability-based (IND) definitions used
in the literature: attribute-hiding (IND-AH)4 and strong attribute-hiding (IND-SAH)5

[BW07, SBC+07, KSW08, AFV11]. In the IND-AH, the adversary should not be able
to distinguish between two pairs of attributes/messages given that it is restricted to
queries which do not decrypt the challenge ciphertext (See Section 4.2.4). It is easy
to see that our SIM-AH definition is stronger than IND-AH. Furthermore, IND-SAH
also ensures that adversary cannot distinguish between the attributes even when it
is allowed to ask for queries that decrypt the messages (in this case, it must output
𝑚0 = 𝑚1). Our SIM-AH definition is weaker than IND-SAH, since we explicitly restrict
the adversary to queries that do not decrypt the challenge ciphertext.

∙ In the context of arbitrary predicates, strong variants of definitions (that is, IND-
SAH and SIM-SAH) are equivalent to security notions for functional encryption (the

4Sometimes also referred as weak attribute-hiding.
5Sometimes also referred as full attribute-hiding.
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simulation definition must be adjusted to give the simulated the outputs of the queries).
However, the strong variant of notion (SIM-SAH) is impossible to realize for many
messages [BSW11, AGVW13]. We refer the reader to Section 4.2.3 for a sketch of
the impossibility. Hence, SIM-AH is the best-possible simulation security for predicate
encryption which we realize in this work. The only problem which we leave open is to
realize IND-SAH from standard LWE.

4.3.2 Our Construction

We refer the reader to Sections 4.4 and 4.5 for the complete description of our construction.
Below, we provide an overview.

Overview. We construct a partially hiding predicate encryption for the class of predicate
circuits 𝐶 : Z𝑡

𝑞×{0, 1}ℓ → {0, 1} of the form ̂︀𝐶 ∘ IP𝛾 where ̂︀𝐶 : {0, 1}ℓ → {0, 1}𝑡 is a boolean
circuit of depth 𝑑, 𝛾 ∈ Z𝑞, and

( ̂︀𝐶 ∘ IP𝛾)(x,y) = IP𝛾(x, ̂︀𝐶(y)),

where IP𝛾(x, z) = 1 iff ⟨x, z⟩ =

(︂∑︀
𝑖∈[𝑡] x[𝑖] · z[𝑖]

)︂
= 𝛾 mod 𝑞. We refer to circuit IP as the

generic inner-product circuit of two vectors.
Looking ahead, ̂︀𝐶 corresponds to FHE evaluation of an arbitrary circuit 𝐶, whereas IP𝛾

corresponds to roughly to FHE decryption; in the language of the introduction in Section 4,̂︀𝐶 corresponds to heavy-weight computation ℎ, whereas IP𝛾 corresponds to light-weight
computation 𝑔.

The scheme. The public parameters are matrices(︀
A, A1, . . . ,Aℓ, B1, . . . ,B𝑡

)︀
An encryption corresponding to the attribute (x,y) ∈ Z𝑡

𝑞 × {0, 1}ℓ is a GPV ciphertext (an
LWE sample) corresponding to the matrix[︀

A | A1 + y[1] ·G | · · · | Aℓ + y[ℓ] ·G | B1 + x[1] ·G | · · · | B𝑡 + x[𝑡] ·G
]︀

To decrypt the ciphertext given y and a key for ̂︀𝐶 ∘ IP𝛾, we apply the BGGHNSVV algorithm
to first transform the first part of the ciphertext into a GPV ciphertext corresponding to the
matrix [︀

A | A ̂︀𝐶1
+ z[1] ·G | · · · | A ̂︀𝐶𝑡

+ z[𝑡] ·G
]︀

where ̂︀𝐶𝑖 is the circuit computing the 𝑖’th bit of ̂︀𝐶 and z = ̂︀𝐶(y) ∈ {0, 1}𝑡. Next, observe
that

−
(︁

(A ̂︀𝐶𝑖
+ z[𝑖] ·G) ·G−1(B𝑖)

)︁
+ z[𝑖] ·

(︁
B𝑖 + x[𝑖] ·G

)︁
= −A ̂︀𝐶𝑖

G−1(B𝑖) + x[𝑖] · z[𝑖] ·G.
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Summing over 𝑖, we have

ℓ∑︁
𝑖=1

−
(︁

(A ̂︀𝐶𝑖
+ z[𝑖] ·G) ·G−1(B𝑖)

)︁
+ z[𝑖] ·

(︁
B𝑖 + x[𝑖] ·G

)︁
= A ̂︀𝐶 ∘ IP + ⟨x, z⟩ ·G

where
A ̂︀𝐶 ∘ IP := −

(︁
A ̂︀𝐶1

G−1(B1) + · · ·+ A ̂︀𝐶𝑡
G−1(B𝑡)

)︁
.

Therefore, given only the public matrices and y (but not x), we may transform the ciphertext
into a GPV ciphertext corresponding to the matrix[︀

A | A ̂︀𝐶 ∘ IP + ⟨x, z⟩ ·G
]︀
.

The secret key corresponding to ̂︀𝐶 ∘ IP𝛾 is essentially a “short basis” for the matrix[︀
A | A ̂︀𝐶 ∘ IP + 𝛾 ·G

]︀
which can be sampled using a short trapdoor T of the matrix A.

Proof strategy. There are two main components to the proof. Fix the selective challenge
attribute x,y. First, we will simulate the secret keys without knowing the trapdoor for the
matrix A: here, we rely on the simulated key generation for the ABE [BGG+14]. Roughly
speaking, we will need to generate a short basis for the matrix[︀

A | AR ̂︀𝐶 ∘ IP + (𝛾 − ̂︀𝐶 ∘ IP(x,y)) ·G
]︀

where R ̂︀𝐶 ∘ IP is a small-norm matrix known to the simulator. Now, whenever ̂︀𝐶 ∘ IP(x,y) ̸= 𝛾
as is the case for admissible adversaries, we will be able to simultae secret keys using the
puncturing techniques in [ABB10a, AFV11, MP12]

Next, we will show that the attribute x is hidden in the challenge ciphertext. Here, we
adopt the proof strategy for attribute-hiding inner product encryption in [AFV11, GMW15].
In the proof, we simulate the matrices A,B1, . . . ,B𝑡 using

A,AR′1 − x[1]G, . . . ,AR′𝑡 − x[𝑡]G

where R′1, . . . ,R
′
𝑡

$← {±1}𝑚×𝑚. In addition, we simulate the corresponding terms in the
challenge ciphertext by:

c, cTR′1, . . . , c
TR′𝑡

where c is a uniformly random vector, which we switched from ATs + e using the LWE
assumption. Here we crucially rely on the fact that switched to simulation of secret keys
without knowing the trapdoor of A. Going further, once c is random, we can switch back
to simulating secret keys using the trapdoor T. Hence, the secret keys now do not leak any
information about R′1, . . . ,R

′
𝑡. Therefore, we may then invoke the left-over hash lemma to
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argue that x is information-theoretically hidden.

4.4 Auxiliary evaluation algorithms
In order to formally describe our scheme, we first need to recall two algorithms (Evalpk,Evalct)
from the BGGHNSVV14 ABE [BGG+14], which we may use as a “black box” and then extend
to our setting. Given a boolean predicate 𝐶 : {0, 1}ℓ → {0, 1} and y ∈ {0, 1}ℓ, the algorithm
Evalct transforms a GPV ciphertext for the matrix[︀

A1 + y[1] ·G | · · · | Aℓ + y[ℓ] ·G
]︀

into one for the matrix [︀
A𝐶 + 𝐶(y) ·G

]︀
,

where the matrix A𝐶 is deterministically derived from (𝐶,A1, . . . ,Aℓ) via Evalpk. We then
extend Evalpk,Evalct to handle circuits ̂︀𝐶 ∘ IP as outlined above, with the additional property
that Evalct is oblivious to x. We exploit the fact that for a multiplication gate, Evalct works
even if one of the attribute remains private, and for addition gates, Evalct works even if both
attributes remain private. Concretely, Evalct transforms a GPV ciphertext for the matrix[︀

A1 + y[1] ·G | · · · | Aℓ + y[ℓ] ·G | B1 + x[1] ·G | · · · | B𝑡 + x[𝑡] ·G
]︀

into one for the matrix [︀
A ̂︀𝐶 ∘ IP + ( ̂︀𝐶 ∘ IP)(x,y) ·G

]︀
,

where the matrix A ̂︀𝐶 ∘ IP is deterministically derived from ( ̂︀𝐶,A1, . . . ,Aℓ,B1, . . . ,B𝑡) via
Evalpk, and where Evalct gets y but not x.

Two basic algorithms. The BGGHNSVV14 ABE provides two deterministic algorithms
Evalpk,Evalct with the following properties:

∙ Evalpk takes as input ℓ matrices A1, . . . ,Aℓ ∈ Z𝑛×𝑚
𝑞 and a predicate 𝐶 : {0, 1}ℓ →

{0, 1}, outputs a matrix A𝐶 ∈ Z𝑛×𝑚
𝑞 ;

∙ Evalct takes as input A1, . . . ,Aℓ and 𝐶 as before, along with y ∈ {0, 1}ℓ and ℓ vectors
u1, . . . ,uℓ ∈ Z𝑚

𝑞 , outputs a vector u𝐶 ∈ Z𝑚
𝑞 .

The algorithms satisfy the following properties:

∙ if (u1, . . . ,uℓ) ≈
(︀
(A1+y[1]·G)Ts, . . . , (Aℓ+y[ℓ]·G)Ts)

)︀
, then u𝐶 ≈ (A𝐶 +𝐶(y)·G)Ts.

∙ if (A1, . . . ,Aℓ) = (AR1−y[1] ·G, . . . ,ARℓ−y[ℓ] ·G) where R1, . . . ,Rℓ are small-norm
matrices, then we have

A𝐶 = AR𝐶 − 𝐶(y) ·G

where R𝐶 is also a small-norm matrix with a roughly 𝑛2𝑑 multiplicative blow-up.
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These two properties are formalized quantitatively in the following lemma:

Lemma 4.4.1 (properties of Evalpk,Evalct [BGG+14]). The algorithms Evalpk,Evalct satisfy
the following properties. For all A1, . . . ,Aℓ ∈ Z𝑛×𝑚

𝑞 , all y ∈ {0, 1}ℓ, all boolean predicate 𝐶
of depth 𝑑, let A𝐶 := Evalpk(A1, . . . ,Aℓ, 𝐶). Then,

∙ for all u1, . . . ,uℓ ∈ Z𝑚
𝑞 and all s ∈ Z𝑛

𝑞 ,

‖u𝐶 − (A𝐶 + 𝐶(y) ·G)Ts‖∞ ≤ 𝑂(ℓ𝑛 log 𝑞)𝑂(𝑑) ·max
𝑖∈[ℓ]

{︀
‖u𝑖 − (A𝑖 + y[𝑖] ·G)Ts‖∞

}︀
where u𝐶 := Evalct(A1, . . . ,Aℓ,u1, . . . ,uℓ,y, 𝐶).

∙ if (A1, . . . ,Aℓ) = (AR1−y[1] ·G, . . . ,ARℓ−y[ℓ] ·G) where R1, . . . ,Rℓ ∈ Z𝑚×𝑚
𝑞 , then

we have
A𝐶 = AR𝐶 − 𝐶(y) ·G

where R𝐶 is efficiently computable given (𝐶,A,R1, . . . ,Rℓ) and

‖R𝐶‖∞ ≤ 𝑂(ℓ𝑛 log 𝑞)𝑂(𝑑) ·max{‖R1‖∞ , . . . , ‖Rℓ‖∞}

Extension to ̂︀𝐶 ∘ IP. We extend the above algorithms to obtain the circuits of the form̂︀𝐶 ∘ IP. Let ̂︀𝐶𝑖 denote the circuit computing the 𝑖’th bit of ̂︀𝐶.

∙ Evalpk takes as input ℓ+𝑡 matrices A1, . . . ,Aℓ,B1, . . . ,B𝑡 ∈ Z𝑛×𝑚
𝑞 and a circuit ̂︀𝐶 ∘ IP :

{0, 1}ℓ × Z𝑡
𝑞 → Z𝑞, outputs a matrix A ̂︀𝐶 ∘ IP ∈ Z𝑛×𝑚

𝑞 computed as follows:

1. For 𝑖 = 1, . . . , 𝑡, compute A ̂︀𝐶𝑖
:= Evalpk(A1, . . . ,Aℓ, ̂︀𝐶𝑖);

2. Output A ̂︀𝐶 ∘ IP := −
(︁
A ̂︀𝐶1

G−1(B1) + · · ·+ A ̂︀𝐶𝑡
G−1(B𝑡)

)︁
.

∙ Evalct takes as input A1, . . . ,Aℓ,B1, . . . ,B𝑡 and ̂︀𝐶 ∘ IP as before, along with y ∈ {0, 1}ℓ
and ℓ + 𝑡 vectors u1, . . . ,uℓ,v1, . . . ,v𝑡 ∈ Z𝑚

𝑞 , outputs a vector u ̂︀𝐶 ∘ IP ∈ Z𝑚
𝑞 computed

as follows:

1. For 𝑖 = 1, . . . , 𝑡, compute u′̂︀𝐶𝑖
:= Evalct(A1, . . . ,Aℓ,u1, . . . ,uℓ,y, ̂︀𝐶𝑖);

2. Output uT̂︀𝐶 ∘ IP :=
(︁

(z[1] · v1 −G−1(B1)
T · u′1) + · · ·+ (z[𝑡] · v𝑡 −G−1(B𝑡)

T · u′̂︀𝐶𝑖
)
)︁
,

where z = ̂︀𝐶(y).

We stress that Evalct does not get x. We obtain the following extension of Lemma 4.4.1:

Lemma 4.4.2 (properties of extended Evalpk,Evalct). The algorithms Evalpk,Evalct satisfy
the following properties. For all A1, . . . ,Aℓ,B1, . . . ,B𝑡 ∈ Z𝑛×𝑚

𝑞 , all (x,y) ∈ Z𝑡
𝑞 ×{0, 1}ℓ, all

boolean circuits ̂︀𝐶 of depth 𝑑, let A ̂︀𝐶 ∘ IP := Evalpk(A1, . . . ,Aℓ,B1, . . . ,B𝑡, ̂︀𝐶 ∘ IP). Then,
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∙ for all u1, . . . ,uℓ,v1, . . . ,v𝑡 ∈ Z𝑚
𝑞 and all s ∈ Z𝑛

𝑞 ,⃦⃦⃦
u ̂︀𝐶 ∘ IP − (A ̂︀𝐶 ∘ IP + ⟨x, ̂︀𝐶(y)⟩ ·G)Ts

⃦⃦⃦
∞
≤ 𝑂(ℓ𝑛 log 𝑞)𝑂(𝑑)·max

𝑖∈[ℓ]

{︀
‖u𝑖 − (A𝑖 + y[𝑖] ·G)Ts‖∞ , ....

}︀
where u ̂︀𝐶 ∘ IP := Evalct(A1, . . . ,Aℓ,B1, . . . ,B𝑡,u1, . . . ,uℓ,v1, . . . ,v𝑡,y, ̂︀𝐶 ∘ IP).

∙ if (A1, . . . ,Aℓ) = (AR1 − y[1] ·G, . . . ,ARℓ − y[ℓ] ·G) and (B1, . . . ,B𝑡) = (BR′1 −
x[1] ·G, . . . ,BR′ℓ − x[𝑡] ·G), where R1, . . . ,Rℓ,R

′
1, . . . ,R

′
𝑡 ∈ Z𝑚×𝑚

𝑞 , then we have

A ̂︀𝐶 ∘ IP = AR ̂︀𝐶 ∘ IP + ⟨x, ̂︀𝐶(y)⟩G

where R ̂︀𝐶 ∘ IP is efficiently computable and⃦⃦
R ̂︀𝐶 ∘ IP⃦⃦∞ ≤ 𝑂(ℓ𝑛 log 𝑞)𝑂(𝑑) ·max{‖R1‖∞ , . . . , ‖Rℓ‖∞ , ‖R

′
1‖∞ , . . . , ‖R

′
𝑡‖∞}

Proof. The proof follows readily from Lemma 4.4.1, along with the calculation

R ̂︀𝐶 ∘ IP := R ̂︀𝐶1
G−1(B1) + · · ·+ R ̂︀𝐶𝑡

G−1(B𝑡)−
(︀
ŷ[1]R′1 + · · ·+ ŷ[𝑡]R′𝑡

)︀
.

4.5 Our PHPE scheme

For simplicity, we present our scheme for 1-bit message spaces.

∙ PH.Setup
(︀
1𝜆, 1𝑡, 1ℓ, 𝑑

)︀
: The setup algorithm takes the security parameter 𝜆, the length

of the secret attribute 𝑡, the length of the public attribute ℓ, and the circuit depth
bound 𝑑. Define the lattice parameters 𝑛 = 𝑛(𝜆),𝑚 = 𝑚(𝑛, 𝑑), 𝑞 = 𝑞(𝑛, 𝑑), 𝜒 = 𝜒(𝑛)
as per Section 4.5.3.

1. Choose random matrices A𝑖 ∈ Z𝑛×𝑚
𝑞 for 𝑖 = 1, . . . , ℓ, B𝑖 ∈ Z𝑛×𝑚

𝑞 for 𝑖 = 1, . . . , 𝑡
and P ∈ Z𝑛×𝑚

𝑞 .6

2. Sample a matrix with associated trapdoor:(︀
A,T

)︀
← TrapSamp(1𝑚, 1𝑛, 𝑞)

3. Let G ∈ Z𝑛×𝑚
𝑞 be the powers-of-two matrix with a public trapdoor basis TG.

4. Output the master public key ph.mpk :=
(︀
{A𝑖}, {B𝑖},A,P) and the master secret

key as ph.msk := (mpk,T).

6To simplify notation, we always denote the collections {A𝑖} := {A𝑖}𝑖∈[ℓ] and {B𝑖} = {B𝑖}𝑖∈[𝑡].
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∙ PH.KeyGen
(︀
ph.msk, ̂︀𝐶 ∘ IP𝛾

)︀
: The key-generation algorithms takes as input the master

secret key msk, a circuit ̂︀𝐶 ∘ IP𝛾. It outputs a secret key sk ̂︀𝐶 ∘ IP𝛾
computed as follows.

1. Let
A ̂︀𝐶 ∘ IP ← Evalpk

(︀
{A𝑖}, {B𝑖}, ̂︀𝐶 ∘ IP

)︀
be the homomorphically computed “public key” as per the evaluation algorithm
in Section 4.4.

2. Sample a matrix R ∈ Z2𝑚×𝑚
𝑞 such that [A|A ̂︀𝐶 ∘ IP + 𝛾 ·G] ·R = P mod 𝑞, where

R← SampleLeft(A,A ̂︀𝐶 ∘ IP + 𝛾 ·G,T,P, 𝑠)

3. Output the secret key sk ̂︀𝐶 ∘ IP𝛾
:= (R).

∙ PH.Enc
(︀
ph.mpk, (x,y),𝑚

)︀
: The encryption algorithm takes as input the public key

ph.mpk, attribute vectors x ∈ Z𝑡
𝑞, y ∈ {0, 1}ℓ and a message 𝑚 ∈ {0, 1}. It computes

ciphertext cty as follows.

1. Choose a secret vector s← (𝜒)𝑛 and error terms e, e′ ← (𝜒)𝑚.

2. Let b =
[︀
0, . . . , 0, ⌈𝑞/2⌉𝑚

]︀T ∈ Z𝑚
𝑞 . Compute encodings

𝛽0 = (A)Ts + e and 𝛽1 = PTs + e′ + b

3. For all 𝑖 = 1, . . . , ℓ compute an encoding

u𝑖 = (A𝑖 + y[𝑖] ·G)Ts + RT

𝑖 e

where R𝑖 ← {−1, 1}𝑚×𝑚.

4. For all 𝑖 = 1, . . . , 𝑡 compute an encoding

v𝑖 =
(︀
B𝑖 + x[𝑖] ·G

)︀T
s + (R′𝑖)

Te𝑖

where R′𝑖 ← {−1, 1}𝑚×𝑚.

5. Output the ciphertext

cty :=

(︂
{u𝑖}𝑖∈[ℓ], {v𝑖}𝑖∈[𝑡], 𝛽0, 𝛽1

)︂
∙ PH.Dec(sk ̂︀𝐶 ∘ IP𝛾

, (cty,y)) : The decryption algorithm takes as input the secret key
sk ̂︀𝐶 ∘ IP𝛾

for a circuit ̂︀𝐶 ∘ IP𝛾 and the ciphertext cty along with the public attribute y.
It proceeds as follows.

1. Using {u𝑖}, {v𝑖} and y, apply the encoding evaluation algorithm (See Section 4.4)
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to obtain a ciphertext

u ̂︀𝐶 ∘ IP ← Evalct
(︀
{A𝑖,u𝑖}, {B𝑖,v𝑖}, ̂︀𝐶 ∘ IP,y

)︀
where u ̂︀𝐶 ∘ IP ≈ (A ̂︀𝐶 ∘ IP + 𝜌 ·G)Ts + e for some 𝜌 ∈ Z𝑞.

2. Now, compute

𝜂 = 𝛽1 −RT ·
[︂

𝛽0
u ̂︀𝐶 ∘ IP

]︂
∈ Z𝑚

𝑞

Output 𝑚 = Round(𝜂[𝑚]) if
[︀
Round(𝜂[1]), . . . ,Round(𝜂[𝑚− 1])

]︀
= 0, where

Round(𝑐) =

{︂
0 if |𝑐| < 𝑞/4
1 otherwise

Otherwise, output ⊥.

4.5.1 Analysis and Correctness

Lemma 4.5.1. Let 𝒞 be a family of circuits bounded by depth 𝑑 and let 𝒫ℋ𝒫ℰ be our scheme
defined above. Assume that for LWE dimension 𝑛 = 𝑛(𝜆), the parameters are instantiated
as follows:

𝜒 = 𝐷Z,
√
𝑛

𝑞 = 𝑂̃(𝑡𝑛𝑑)𝑂(𝑑)

𝑚 = 𝑂(𝑛 log 𝑞)

𝐵 = 𝐵(𝑛)

𝑠 = 𝑂(𝑡𝑛 log 𝑞)𝑂(𝑑)

Then, the scheme is correct according to Definition 4.3.1.

Proof. We proceed proving correctness of the scheme in two steps. First, we bound the error
term e in the final homomorphically computed encoding u ̂︀𝐶 ∘ IP. By Lemma 4.4.2, the error
in u ̂︀𝐶 ∘ IP satisfies⃦⃦⃦

u ̂︀𝐶 ∘ IP − (A ̂︀𝐶 ∘ IP + ⟨x, ̂︀𝐶(y)⟩ ·G)Ts
⃦⃦⃦
∞
≤ 𝑂(𝑡𝐵 ·𝑂(𝑛 log 𝑞)𝑂(𝑑+1)).

Recall that [A | A ̂︀𝐶 ∘ IP + 𝛾 ·G] ·R = P mod 𝑞 and ‖RT‖∞ ≤ 𝑠
√
𝑚. After multiplying by

RT, we obtain the final error bound of 𝑂(𝑡𝐵 ·𝑂(𝑛 log 𝑞)𝑂(𝑑+1)). We then consider two cases:

∙ if ⟨x, ̂︀𝐶(y)⟩ = 𝛾 mod 𝑞, then

||𝜂 = 𝛽1 −RT ·
[︂

𝛽0
u ̂︀𝐶 ∘ IP

]︂
||∞ = 𝑂(𝑡𝐵 ·𝑂(𝑛 log 𝑞)𝑂(𝑑+1)) ≤ 𝑞/4
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in the first 𝑚− 1 entries for sufficiently large 𝑞 = 𝑂̃(𝑡𝑛𝑑)𝑂(𝑑). Hence, the message 𝑚 is
recovered correctly.

∙ Otherwise, say ⟨x, ̂︀𝐶(y)⟩ = 𝛾′ ̸= 𝛾 mod 𝑞 and 𝛾′ = 𝛾+ 𝛾*. Then, then multiplying by
RT = [R1,R2] we obtain

𝜂 = 𝛽1 −RT ·
[︂

𝛽0
u ̂︀𝐶 ∘ IP

]︂
= RT

2 · 𝛾* ·G + e*

for some error vector e*. Hence, with all but negligible probability all first 𝑚 − 1
coefficients of 𝜂 will be below 𝑞/4.

This concludes the correctness proof.

4.5.2 Security

Theorem 4.5.2. Let 𝒫ℋ𝒫ℰ be our partially-hiding predicate encryption scheme. Then, it
is secure according to Definition 4.3.1 assuming hardness of Learning With Errors problem.

Proof. We describe a p.p.t. simulator Sim algorithm and then claim that the output of the
ideal experiment is indistinguishable from real via a series of hybrids.

∙ Sim(ph.mpk,y): samples 𝛽0, 𝛽1,u𝑖,v𝑖 randomly and independently from Z𝑚
𝑞 and

outputs the ciphertext

ct :=

(︂
{u𝑖}𝑖∈[ℓ], {v𝑖}𝑖∈[𝑡],y, 𝛽0, 𝛽1

)︂
Hybrid Sequence. We now claim that security of our scheme scheme via a series of
hybrids, where Hybrid 0 corresponds to the real experiment and Hybrid 6 corresponds to
the simulated experiment using algorithms Sim.

∙ Hybrid 0: The real experiment.

∙ Hybrid 1: The real game algorithms PH.Setup,PH.Enc are replaced with PH.Setup*1,PH.Enc
*
1

defined below. Informally, these algorithms use the knowledge of x,y to setup the
public parameters in a special form.

∙ Hybrid 2: The real game PH.KeyGen is replaced with PH.KeyGen*1, where instead of
using the trapdoor T of the matrix A, the secret keys are sampled using the public
trapdoor TG along with the trapdoor information generated using PH.Setup*1.

∙ Hybrid 3: Same as above, except the PH.Enc*1 is replaced with PH.Enc*2 defined below.

∙ Hybrid 4: Same as above, except PH.KeyGen*1 is replaced with real key-generation
PH.KeyGen.
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∙ Hybrid 5: Same as above, except PH.Enc*2 is replaced with PH.Enc*3 define below,
which informally replaces all ciphertext components with random elements.

∙ Hybrid 6: The simulated experiment, that is, same as above, except PH.Setup*1 is
replaced with PH.Setup.

Auxiliary Algorithms. We now define the auxiliary algorithms similar to those in
[AFV11, GMW15] and then argue that the hybrids are either statistically or computationally
indistinguishable.

∙ PH.Setup*1
(︀
1𝜆, 𝑑,x,y

)︀
: In addition to the system parameters, the setup algorithms use

the knowledge of the challenge attribute vectors (x,y). Define the lattice parameters
𝑛 = 𝑛(𝜆),𝑚 = 𝑚(𝑛, 𝑑), 𝑞 = 𝑞(𝑛, 𝑑), 𝜒 = 𝜒(𝑛) (See Section 4.5.3).

1. Sample a matrix with associated trapdoor:(︀
A,T

)︀
← TrapSamp(1𝑚, 1𝑛, 𝑞)

Let G be the powers-of-two matrix with a public trapdoor TG.

2. Let A𝑖 = A ·R𝑖 − y[𝑖] ·G ∈ Z𝑛×𝑚
𝑞 for 𝑖 = 1, . . . , ℓ where R𝑖

$← {−1, 1}𝑚×𝑚.

3. Let B𝑖 = A ·R′𝑖 − x[𝑖] ·G ∈ Z𝑛×𝑚
𝑞 for 𝑖 = 1, . . . , 𝑡 where R′𝑖

$← {−1, 1}𝑚×𝑚.

4. Choose a random matrix P ∈ Z𝑛×𝑚
𝑞 .

5. Output the master public key ph.mpk :=
(︀
{A𝑖}, {B𝑖},A,P) and the master secret

key as ph.msk := (mpk,T, {R𝑖}, {R′𝑖}).

In Hybrids 1, 4, 5, we will generate secret keys using PH.KeyGen, which requires
knowing T. In Hybrids 2 and 3, we will generate secret keys using PH.KeyGen*1, which
does not require knowing T.

∙ PH.KeyGen*1
(︀
ph.msk, ̂︀𝐶 ∘ IP𝛾

)︀
: The key-generation algorithms takes as input the master

secret key ph.msk, a pair of circuits 𝐶, IP𝛾. It outputs a secret key sk ̂︀𝐶 ∘ IP𝛾
computed

as follows.

1. Let
A ̂︀𝐶 ∘ IP ← Evalpk

(︀
{A𝑖}, {B𝑖}, ̂︀𝐶 ∘ IP

)︀
be the homomorphically computed “public key” as per the evaluation algorithm
in Section 4.4.

2. By Lemma 4.4.2, A ̂︀𝐶 ∘ IP = A·R ̂︀𝐶 ∘ IP−⟨x, ̂︀𝐶(y)⟩·G. Now, an admissible adversary
is restricted to queries on circuits ̂︀𝐶 ∘ IP𝛾 such that ⟨x, ̂︀𝐶(y)⟩ ̸= 𝛾. Hence, we
can sample R ∈ Z2𝑚×𝑚

𝑞 such that

[A | A ̂︀𝐶 ∘ IP + 𝛾 ·G] ·R = [A | AR ̂︀𝐶 ∘ IP + (𝛾 − ⟨x, ̂︀𝐶(y)⟩) ·G] ·R = P mod 𝑞,
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using
R← SampleRight(A, (𝛾 − ⟨x, ̂︀𝐶(y)⟩) ·G,R ̂︀𝐶 ∘ IP,TG,P, 𝑠)

3. Output the secret key sk ̂︀𝐶 ∘ IP𝛾
:= (R).

∙ PH.Enc*1
(︀
ph.mpk, (x,y),𝑚

)︀
: The encryption algorithm takes as input the public key

ph.mpk, challenge vectors x ∈ Z𝑡
𝑞, y ∈ Zℓ

𝑞 and a message 𝑚. It computes ciphertext
cty as follows.

1. Choose a vector s ∈ (𝜒)𝑛 and compute encodings

𝛽0 = (A)Ts + e and 𝛽1 = PTs + e′ + b

where b = [0, . . . , 0, ⌈𝑞/2⌉𝑚]T ∈ Z𝑚
𝑞 .

2. For all 𝑖 = 1, . . . , ℓ compute an encoding

u𝑖 = RT

𝑖 · 𝛽0
= (A ·R𝑖)

Ts + RT

𝑖 · e
= (A𝑖 + y[𝑖] ·G)Ts + RT

𝑖 · e

3. For all 𝑖 = 1, . . . , 𝑡 compute an encoding

v𝑖 = (R′𝑖)
T · 𝛽0

= (A ·R′𝑖)Ts + (R′𝑖)
T · e

= (B𝑖 + x[𝑖] ·G)Ts + (R′𝑖)
T · e

4. Output the ciphertext

ct :=

(︂
{u𝑖}𝑖∈[ℓ], {v𝑖}𝑖∈[𝑡],y, 𝛽0, 𝛽1

)︂
∙ PH.Enc*2

(︀
ph.mpk, (x,y),𝑚

)︀
:

1. Choose random elements 𝛽0, 𝛽1 from Z𝑚
𝑞 .

2. For all 𝑖 = 1, . . . , ℓ compute an encoding u𝑖 = RT
𝑖 · 𝛽0.

3. For all 𝑖 = 1, . . . , 𝑡 compute an encoding v𝑖 = (R′𝑖)
T · 𝛽0.

4. Output the ciphertext

ct :=

(︂
{u𝑖}𝑖∈[ℓ], {v𝑖}𝑖∈[𝑡],y, 𝛽0, 𝛽1

)︂
∙ PH.Enc*3

(︀
ph.mpk, (x,y),𝑚

)︀
: The final auxiliary encryption algorithm computes cipher-

text cty as a collection of random encodings. That is, 𝛽0, 𝛽1,u𝑖,v𝑖 are all randomly
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and independently chosen from Z𝑚
𝑞 . Output the ciphertext

ct :=

(︂
{u𝑖}𝑖∈[ℓ], {v𝑖}𝑖∈[𝑡],y, 𝛽0, 𝛽1

)︂
Lemma 4.5.3. The output of Hybrid 0 is statistically indistinguishable from the output of
Hybrid 1.

Proof. The proof follows closely to [AFV11, Lemma 4.3]. For completeness, we first
summarize the difference between the two hybrids:

1. In Hybrid 0, matrices A𝑖,B𝑖 are uniformly chosen in Z𝑛×𝑚
𝑞 . However, in Hybrid 1,

A𝑖 = A ·R𝑖 − y[𝑖] ·G and B𝑖 = A ·R′𝑖 − x[𝑖] ·G.

2. In Hybrid 0, the ciphertext encodings are computed as

u𝑖 = (A𝑖 + y[𝑖] ·G)Ts + RT

𝑖 e and v𝑖 = (A𝑖 + x[𝑖] ·G)Ts + (R′𝑖)
Te

whereas in Hybrid 1 it is computed as

u𝑖 = RT

𝑖𝛽0 and v𝑖 = (R′𝑖)
T𝛽0

where 𝛽0 = (A)Ts + e.

We now argue that the joint distribution of the public parameters, the ciphertext and the
secret keys (︂

A, {A𝑖}, {B𝑖}, {u𝑖}, {v𝑖}, {sk ̂︀𝐶 ∘ IP}
)︂

is statistically indistinguishable between the two hybrids. Note that the secret keys are
produced in both using trapdoor T and the public matrices. Now, observe that by
Lemma 2.4.6, (︀

A,A ·R𝑖 − y[𝑖] ·G,RT

𝑖 e,T
)︀ 𝑠
≈

(︀
A,A𝑖,R

T

𝑖 e,T
)︀
.

This holds for matrices B𝑖 as well. And since for all 𝑖, R𝑖 (resp. R′𝑖) is randomly and
independently chosen, it follows that(︂

A,
{︀
A𝑖

}︀
,
{︀
B𝑖

}︀
,
{︀
RT

𝑖 e
}︀
,
{︀

(R′𝑖)
Te
}︀
,T

)︂
𝑠
≈

(︂
A,

{︀
A𝑖R𝑖 − y[𝑖] ·G

}︀
,
{︀
B𝑖R

′
𝑖 − x[𝑖] ·G

}︀
,
{︀
RT

𝑖 e
}︀
,
{︀

(R′𝑖)
Te
}︀
,T

)︂
.

The ciphertext components u𝑖 and v𝑖 are derived simply by adding (A𝑖 + y[𝑖] · G)Ts and
(B𝑖 +x[𝑖] ·G)Ts to RT

𝑖 e and (R′𝑖)
Te, respectively. And the secret keys are generated from the

matrices and the trapdoor T. Since applying a function to two statistically indistinguishable
distributions produces two statistically indistinguishable distributions, this shows that the
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public parameters, the ciphertext and the secret keys are statistically close in both hybrids.

Lemma 4.5.4. The output of Hybrid 1 is statistically indistinguishable from the output of
Hybrid 2.

Proof. From Hybrid 1 to Hybrid 2, we switch between between KeyGen and PH.KeyGen*.
Fix a secret key query ̂︀𝐶 ∘ IP𝛾 made by an admissible adversary:

∙ In Hybrid 1, the secret key is sampled using SampleLeft with trapdoor T, and its
distribution only depends on the public matrices in ph.mpk by Theorem 2.4.3 (provided
the parameter 𝑠 is sufficiently large);

∙ In Hybrid 2, the secret key is sampled using SampleRight with trapdoor TG along
with R𝑖,R

′
𝑖 (which we can do since the adversary is admissible) and its distribution

only depends on the public matrices in ph.mpk by Theorem 2.4.4 (again, provided 𝑠 is
sufficiently large).

In particular, in both hybrids, the distribution of the secret key only depends on the matrices
A,A ̂︀𝐶 ∘ IP + 𝛾 ·G,P and are in turn completely determined by ph.mpk. Since ph.mpk has
exactly the same distribution in Hybrids 1 and 2, it follows that the output of both hybrids
are statistically indistinguishable.

Lemma 4.5.5. The output of Hybrid 2 is computationally indistinguishable from the output
of Hybrid 3, under the LWE assumption.

Proof. We show how to break the security of LWE given an adversary that distinguishes
between the two hybrids. We are given matrices (A,P) ∈ Z𝑛×𝑚

𝑞 × Z𝑛×𝑚
𝑞 and samples

u,w ∈ Z𝑚
𝑞 ×Z𝑚

𝑞 which are either LWE samples for some secret vector s or randomly chosen.
We simulate the experiments as follows.

∙ Runs PH.Setup*1,PH.KeyGen
*
1 algorithms using the matrices A,P from the challenge.

∙ To simulate the ciphertext encodings, let 𝛽0 = u and 𝛽1 = w + b, where b =[︀
0, . . . , 0, ⌈𝑞/2⌉𝑚

]︀T ∈ Z𝑚
𝑞 . The ciphertext encodings u𝑖,v𝑖 are computed using R𝑖,R

′
𝑖

as
u𝑖 = RT

𝑖𝛽0 and v𝑖 = (R′𝑖)
T𝛽0

Output

ct :=

(︂
{u𝑖}𝑖∈[ℓ], {v𝑖}𝑖∈[𝑡],y, 𝛽0, 𝛽1

)︂
Now clearly, if u = ATs + e and w = PTs + e′, then the simulation is identical to Hybrid 2.
Otherwise, if u,w are random elements then the experiment corresponds exactly to Hybrid
3. Hence, given an adversary that distinguishes between Hybrids 2 and 3, we can break the
security of the standard LWE problem.
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Lemma 4.5.6. The output of Hybrid 3 is statistically indistinguishable from the output of
Hybrid 4.

Proof. The proof follows similarly to that of Lemma 4.5.4, where we switch between
PH.KeyGen* and KeyGen.

Lemma 4.5.7. The output of Hybrid 4 is statistically indistinguishable from the output of
Hybrid 5.

Proof. In Hybrid 4, the ciphertext encodings are computed as u𝑖 = RT
𝑖 · 𝛽0 and v𝑖 =

(R′𝑖)
T · 𝛽0. However, in Hybrid 5 these are randomly chosen from the encoding space. The

indistinguishability of two hybrids follows from the standard leftover hash lemma, since:

∙ the secret keys are generated using PH.KeyGen, which do not use any information about
R𝑖,R

′
𝑖;

∙ the only additional leakage on R𝑖,R
′
𝑖 comes from (AR𝑖,BR′𝑖) in ph.mpk.

Therefore, for all A,B, 𝛽0 and for all 𝑖,(︂
A,B, 𝛽0, {AR𝑖,R

T

𝑖 · 𝛽0}, {BR′𝑖, (R
′
𝑖)

T · 𝛽0}
)︂

𝑠
≈

(︂
A,B, 𝛽0, {AR𝑖,u𝑖}, {BR′𝑖,v𝑖}

)︂
for randomly chosen R𝑖,R

′
𝑖,u𝑖,v𝑖 and sufficiently large 𝑚 = 𝑂(𝑛 log 𝑞).

Lemma 4.5.8. The output of Hybrid 5 is statistically indistinguishable from the output of
Hybrid 6.

Proof. The proof follows similarly to that of Lemma 4.5.3, where we switch between
PH.Setup*1 and PH.Setup.

This completes the security proof.

4.5.3 Parameters Selection of Our PHPE Scheme

We must set the parameters to satisfy correctness and security of the scheme. For correctness,
we must ensure that the magnitude of the final error e is below 𝑞/4. For security, we must
ensure the statistical indistingushability of matrix A from uniform and indistinguishability
of SampleLeft and SampleRight algorithms by setting parameter 𝑠 large enough. We start
by setting LWE dimension 𝑛 = 𝑛(𝜆), the error distribution 𝜒 = 𝜒(𝑛) = 𝐷Z,

√
𝑛 and

the error bound 𝐵 = 𝐵(𝑛) = 𝑂(𝑛). We set the modulus 𝑞 = 𝑂̃(𝑡𝑛𝑑)𝑂(𝑑) and lattice
dimension 𝑚 = 𝑂(𝑛 log 𝑞) to apply Lemma 2.4.1. Finally, we set 𝑠 = 𝑂(𝑡𝑛 log 𝑞)𝑂(𝑑) to apply
Lemmas 2.4.3, 2.4.4. As shown in Section 4.5.1, these parameters also satisfy the correctness
requirements of the scheme. That is, the master public key, ciphertext and secret keys all
have size poly(𝜆, 𝑡, ℓ, 𝑑) where (1𝜆, 1𝑡, 1ℓ, 1𝑑) is the input to PH.Setup and we achieve security
under LWE𝑛,𝑞,𝜒 where 𝑞 = 𝑂̃(𝑡𝑛𝑑)𝑂(𝑑) and the modulus-to-noise ratio is 𝑂̃(𝑡𝑛𝑑)𝑂(𝑑).
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4.6 Predicate Encryption for Circuits

In this section, we present our main construction of predicate encryption for circuits by
bootstrapping on top of the partially-hiding predicate encryption. That is,

∙ We construct a Predicate Encryption scheme 𝒫ℰ = (Setup,KeyGen,Enc,Dec) for
boolean predicate family 𝒞 bounded by depth 𝑑 over 𝑘 bit inputs.

starting from

∙ an FHE scheme ℱℋℰ = (FH.Keygen,FH.Enc,FH.Dec,FH.Eval) with properties as
described in Section 4.2.5. Define ℓ as the size of the initial ciphertext encrypting
𝑘 bit messages, and 𝑡 as the size of the FHE secret key and evaluated ciphertext
vectors;

∙ a partially-hiding predicate encryption scheme 𝒫ℋ𝒫ℰ = (PH.Setup,PH.KeyGen,
PH.Enc,PH.Dec) for the class 𝒞PHPE of predicates bounded by some depth parameter
𝑑′ = poly(𝑑, 𝜆, log 𝑞). Recall that

( ̂︀𝐶 ∘ IP𝛾)(x ∈ Z𝑡
𝑞,y ∈ {0, 1}𝑡) = 1 iff

(︂∑︁
𝑖∈[𝑡]

x[𝑖] · ̂︀𝐶(y)[𝑖]

)︂
= 𝛾 mod 𝑞

where ̂︀𝐶 : {0, 1}ℓ → {0, 1}𝑡 is a circuit of depth at most 𝑑′.

Overview. At a high level, the construction proceeds as follows:

∙ the 𝒫ℰ ciphertext corresponding to an attribute a ∈ {0, 1}𝑘 is a 𝒫ℋ𝒫ℰ ciphertext
corresponding to an attribute (fhe.sk, fhe.ct) where fhe.sk

$← Z𝑡
𝑞 is private and fhe.ct :=

FH.Enc(a) ∈ {0, 1}ℓ is public;

∙ the 𝒫ℰ secret key for a predicate 𝐶 : {0, 1}𝑘 → {0, 1} ∈ 𝒞 is a collection of 2𝐵 + 1

𝒫ℋ𝒫ℰ secret keys for the predicates { ̂︀𝐶 ∘ IP𝛾 : Z𝑡
𝑞×{0, 1}ℓ → {0, 1}}𝛾=⌊𝑞/2⌋−𝐵,...,⌊𝑞/2⌋+𝐵

where ̂︀𝐶 : {0, 1}ℓ → {0, 1} is the circuit:

̂︀𝐶(fhe.ct) := FH.Eval(fhe.ct, 𝐶),

so ̂︀𝐶 is a circuit of depth at most 𝑑′ = poly(𝑑, 𝜆, log 𝑞);

∙ decryption works by trying all possible 2𝐵 + 1 secret keys.
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Note that the construction relies crucially on the fact that 𝐵 (the bound on the noise in the
FHE evaluated ciphertexts) is polynomial. For correctness, observe that for all 𝐶, a:

𝐶(a) = 1

⇔ FH.Dec(fhe.sk,FH.Eval(𝐶, fhe.ct)) = 1

⇔ ∃ 𝛾 ∈ [⌊𝑞/2⌋ −𝐵, ⌊𝑞/2⌋+𝐵] such that
(︂∑︁

𝑖∈[𝑡]

fhe.sk[𝑖] · fhe.ct[𝑖]
)︂

= 𝛾 mod 𝑞

⇔ ∃ 𝛾 ∈ [⌊𝑞/2⌋ −𝐵, ⌊𝑞/2⌋+𝐵] such that ( ̂︀𝐶 ∘ IP𝛾)(fhe.sk, fhe.ct) = 1

where fhe.sk, fhe.ct, 𝐶 are derived from 𝐶, a as in our construction.

4.6.1 Our Predicate Encryption scheme

Our construction proceeds as follows:

∙ Setup(1𝜆, 1𝑘, 𝑑): The setup algorithm takes the security parameter 𝜆, the attribute
length 𝑘 and the predicate depth bound 𝑑.

1. Run the partially-hiding PE scheme for family 𝒞PHPE to obtain a pair of master
public and secret keys:

(ph.mpk, ph.msk)← PH.Setup(1𝜆, 1𝑡, 1ℓ, 𝑑′)

where for 𝑘-bit messages and depth 𝑑 circuits: 𝑡 is the length of FHE secret key,
ℓ is the bit-length of the initial FHE ciphertext and 𝑑′ is the bound on FHE
evaluation circuit (as described at the beginning of this section).

2. Output (mpk := ph.mpk,msk := ph.msk).

∙ KeyGen(msk, 𝐶): The key-generation algorithms takes as input the master secret key
msk and a predicate 𝐶. It outputs a secret key sk𝐶 computed as follows.

1. Let ̂︀𝐶(·) := FH.Eval(·, 𝐶) and let ( ̂︀𝐶 ∘ IP𝛾) be the predicates for 𝛾 = ⌊𝑞/2⌋ −
𝐵, . . . , ⌊𝑞/2⌋+𝐵.

2. For all 𝛾 = ⌊𝑞/2⌋ −𝐵, . . . , ⌊𝑞/2⌋+𝐵, compute

sk ̂︀𝐶 ∘ IP𝛾
← PH.KeyGen

(︀
ph.msk, ̂︀𝐶 ∘ IP𝛾

)︀
3. Output the secret key as sk𝐶 :=

(︀
{sk ̂︀𝐶 ∘ IP}𝛾=⌊𝑞/2⌋−𝐵,...,⌊𝑞/2⌋+𝐵

)︀
.

∙ Enc(mpk, a,𝑚): The encryption algorithm takes as input the public key mpk, the input
attribute vector a ∈ {0, 1}𝑘 and message 𝑚 ∈ {0, 1}. It proceeds as follow.

1. Samples a fresh FHE secret key fhe.sk ∈ Z𝑡
𝑞 by running FH.Keygen(1𝜆, 1𝑑′ , 1𝑘).
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2. Encrypt the input to obtain

fhe.ct← FH.Enc(fhe.sk, a) ∈ {0, 1}ℓ

3. Compute
ctfhe.ct ← PH.Enc

(︀
mpk, (fhe.sk, fhe.ct),𝑚

)︀
Note that the fhe.sk corresponds to the hidden attribute and fhe.ct corresponds
to the public attribute.

4. Output the ciphertext ct = (ctfhe.ct, fhe.ct).

∙ Dec(sk𝐶 , ct) : The decryption algorithm takes as input the secret key sk𝐶 with
corresponding predicate 𝐶 and the ciphertext ct. If there exists 𝛾 = ⌊𝑞/2⌋ −
𝐵, . . . , ⌊𝑞/2⌋+𝐵 such that

PH.Dec(sk ̂︀𝐶 ∘ IP𝛾
, (ctfhe.ct, fhe.ct)) = 𝑚 ̸=⊥

then output 𝑚. Otherwise, output ⊥.

4.6.2 Correctness

Lemma 4.6.1. Let 𝒞 be a family of predicates bounded by depth 𝑑 and let 𝒫ℋ𝒫ℰ be the
partially-hiding PE and ℱℋℰ be a fully-homomorphic encryption as per scheme description.
Then, our predicate encryption scheme 𝒫ℰ is correct according to Definition 4.2.1. Moreover,
the size of each secret key is poly(𝑑, 𝜆) and the size of each ciphertext is poly(𝑑, 𝜆, 𝑘).

Proof. Fix an arbitrary attribute vector a and a predicate 𝐶.

∙ If 𝐶(a) = 1, we claim that decryption returns 𝑚 with all but negligible probability.
By the correctness of FHE decryption, we have

⟨fhe.sk,FH.Eval(fhe.ct, 𝐶)⟩ = 𝜌 mod 𝑞

for some scalar 𝜌 in range [⌊𝑞/2⌋ −𝐵, ⌊𝑞/2⌋+𝐵]. Hence,

PH.Dec((sk ̂︀𝐶 ∘ IP𝛾
, ̂︀𝐶 ∘ IP𝛾), (ctfhe.ct, fhe.ct)) =

{︃
𝑚 if 𝛾 = 𝜌

⊥ otherwise

by the correctness of partially-hiding scheme.

∙ If 𝐶(a) = 0, then by the correctness of FHE decryption

⟨fhe.sk,FH.Eval(fhe.ct, 𝐶)⟩ = 𝜌 mod 𝑞
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for a scalar 𝜌 outside of range [⌊𝑞/2⌋ − 𝐵, ⌊𝑞/2⌋ + 𝐵]. Hence, for all 𝛾 = ⌊𝑞/2⌋ −
𝐵, . . . , ⌊𝑞/2⌋+𝐵,

PH.Dec((sk ̂︀𝐶 ∘ IP𝛾
, ̂︀𝐶 ∘ IP𝛾), (ctfhe.ct, fhe.ct)) =⊥

The correctness of the scheme follows.

4.6.3 Security

Theorem 4.6.2. Let 𝒞 be a family of predicates bounded by depth 𝑑 and let 𝒫ℋ𝒫ℰ be
the secure partially-hiding PE and ℱℋℰ be the secure fully-homomorphic encryption as
per scheme description. Then, our predicate encryption scheme 𝒫ℰ is secure according to
Definition 4.2.2.

Proof. We define p.p.t. simulator algorithms EncSim and argue that its output is indistin-
guishable from the output of the real experiment. Let PH.EncSim be the p.p.t. simulator for
partially-hiding predicate encryption scheme.

∙ EncSim(mpk, 1|a|, 1|𝑚|): To compute the encryption, the simulator does the following.
It samples FHE secret key fhe.sk by running FH.Keygen(1𝜆, 1𝑑′ , 1𝑘). It encrypts a zero-
string fhe.ct← FH.Enc(fhe.sk,0). It obtains the ciphertext as

ctfhe.ct ← PH.EncSim(mpk, fhe.ct, 1|fhe.sk|, 1|𝑚|).

We now argue via a series of hybrids that the output of the ideal experiment.

∙ Hybrid 0: The real experiment.

∙ Hybrid 1: The real encryption algorithm is replaced with Enc*, where Enc* is
an auxiliary algorithm defined below. On the high level, Enc* computes the FHE
ciphertext honestly by sampling a secret key and using the knowledge of a. It then
invokes PH.EncSim on the honestly generated ciphertext.

∙ Hybrid 2: The simulated experiment.

Auxiliary Algorithms. We define the auxiliary algorithm Enc* used in Hybrid 1.

∙ Enc*(a, 1|𝑚|): The auxiliary encryption algorithm takes as input the attribute vector a
and message length.

1. Sample a fresh FHE secret key fhe.sk by running FH.Keygen(1𝜆, 1𝑑′ , 1𝑘).

2. Encrypt the input attribute vector to obtain a ciphertext

fhe.ct← FH.Enc(fhe.sk, a) ∈ {0, 1}ℓ
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3. Run PH.EncSim on input (mpk, fhe.ct, 1|fhe.sk|, 1|𝑚|) to obtain the ciphertext ctfhe.ct.

Lemma 4.6.3. The output of Hybrid 0 is computationally indistinguishable from the Hybrid
1, assuming security of Partially-Hiding Predicate Encryption.

Proof. Assume there is an adversary Adv and a distinguisher 𝒟 that distinguishes the output
(a,𝑚, 𝛼) produced in either of the two hybrids. We construct an adversary Adv′ and a
distinguisher 𝒟′ that break the security of the Partially-Hiding Predicate Encryption. The
adversary Adv′ does the following.

1. Invoke the adversary Adv to obtain an attribute vector a.

2. Sample a fresh FHE secret key fhe.sk using FH.Keygen(1𝜆, 1𝑑′ , 1𝑘). Encrypt the
attribute vector

fhe.ct← FH.Enc(fhe.sk, a)

and output the pair (fhe.sk, fhe.ct) as the “selective” challenge attribute.

3. Upon receiving mpk, it forwards it to Adv.

4. For each oracle query 𝐶 that Adv makes which satisfies 𝐶(a) ̸= 0, Adv′ uses its
oracle to obtain secret keys sk ̂︀𝐶 ∘ IP𝛾

for 𝛾 = ⌊𝑞/2⌋ − 𝐵, . . . , ⌊𝑞/2⌋ + 𝐵. It outputs
sk𝐶 =

(︀
{sk ̂︀𝐶 ∘ IP𝛾

}𝛾=⌊𝑞/2⌋−𝐵,...,⌊𝑞/2⌋+𝐵

)︀
.

5. It outputs message 𝑚 that Adv produces, obtains a ciphertext ctfhe.ct and sends ct =
(ctfhe.ct, fhe.ct) back to Adv to obtain 𝛼.

We note that given Adv that is admissible, Adv′ is also admissible. That is, for all querieŝ︀𝐶 ∘ IP𝛾 that Adv′ makes satisfies ( ̂︀𝐶 ∘ IP𝛾)(fhe.sk, fhe.ct) = 0 since ⟨fhe.sk, ̂︀𝐶(fhe.ct)⟩ ≠ 𝛾 for
𝛾 = ⌊𝑞/2⌋ − 𝐵, . . . , ⌊𝑞/2⌋ + 𝐵 by the correctness of FHE in Section 4.2.5 and the fact that
𝐶(a) ̸= 0. Finally, the distinguisher 𝒟′ on input (fhe.sk, fhe.ct,𝑚, 𝛼) invokes 𝒟 and outputs
whatever it outputs. Now, in Hybrid 0 the algorithms used as PH.Setup,PH.KeyGen,PH.Enc
which corresponds exactly to the real security game of PHPE. However, in Hybrid 1 the
algorithms correspond exactly to the simulated security game. Hence, we can distinguish
between the real and simulated experiments contradicting the security of PHPE scheme.

Lemma 4.6.4. The output of Hybrid 1 and Hybrid 2 are computationally indistinguishable,
assuming semantic security of Fully-Homomorphic Encryption Scheme.

Proof. The only difference in Hybrids 1 and 2 is how the FHE ciphertext is produced. In
one experiment, it is computed honestly by encrypting the attribute vector a, while in the
other experiment it is always an encryption of 0. Hence, we can readily construct an FHE
adversary that given a, distinguishes encryption of a from encryption of 0 as follows:

1. Invoke the admissible PE adversary Adv to obtain an attribute vector a.

2. Run the honest PH.Setup and forwards mpk to Adv.

96



3. For each oracle query 𝐶 that Adv makes which satisfies 𝐶(a) ̸= 0, return sk𝐶 =(︀
{sk ̂︀𝐶 ∘ IP𝛾

}𝛾=⌊𝑞/2⌋−𝐵,...,⌊𝑞/2⌋+𝐵

)︀
as computed using the honest PH.KeyGen algorithm.

4. To simulate the ciphertext, first forward the pair (a,0) to the FHE challenger to obtain
a ciphertext fhe.ct. Then, run PH.EncSim(mpk, fhe.ct, 1|fhe.sk|, 1𝑚) to obtain a ciphertext
ctfhe.ct and forward it to Adv

5. Finally, it runs the PE distinguisher on input (a,𝑚, 𝛼) and outputs its guess.

The lemma then follows from semantic security of the FHE.

This completes the proof of the security of the scheme.

We refer the reader to Section 4.6.4 for the summary of parameters selection.

4.6.4 Parameters Selection

We summarize the lattice parameters selection for our construction. First, we set the LWE
dimension 𝑛 = poly(𝜆) and the error distribution 𝜒 = 𝜒(𝑛) = 𝐷Z,

√
𝑛. Now, we set FHE

secret key size 𝑡 = poly(𝜆) and modulo 𝑞 = 𝑂̃(𝑡𝑛𝑑)𝑂(𝑑). To encrypt 𝑘-bit attribute vector
and support FHE evaluation of arbitrary depth-𝑑 circuits, we set ℓ = poly(𝑘, 𝑑, 𝜆, log 𝑞) and
𝑑′ = poly(𝑑, 𝜆, log 𝑞). That is, the master public key, ciphertext and secret keys all have
size poly(𝜆, 𝑘, 𝑑) and we achieve security under LWE𝑛,𝑞,𝜒 where 𝑞 = 2poly(𝑑,𝑛,log 𝑘) and the
modulus-to-noise ratio is 2poly(𝑑,𝑛,log 𝑘).

4.7 Conclusions and Open Problems
In this chapter, we presented a construction of predicate encryption for arbitrary circuits.
The main limitation of our construction is the dependence on the depth. It remains open
to remove this dependency – possibly by providing a general bootstrapping transformation.
It remains an intriguing open problem to realize strong security notion (that is, realize
indistinguishability-based functional encryption) from standard learning with errors problem.
Additionally, it remains open to construct predicate encryption for other models of
computation, such as Turing machines or RAM programs from standard assumption. It
also remains to construct ciphertext-policy predicate encryption for circuits – where the
secret keys are associated with attributes a and ciphertexts are associated with predicates
𝑃 and messages 𝑚, and the size of the predicates is not a-priori bounded by the scheme.
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Chapter 5

Graph-Induced Multilinear Maps

Cryptographic multilinear maps are an amazingly powerful tool: like homomorphic
encryption schemes, they let us encode data in a manner that simultaneously hides it and
permits processing on it. But they go even further and let us recover some limited information
(such as equality) on the processed data without needing any secret key. Even in their simple
bi-linear form (that only supports quadratic processing) they already give us pairing-based
cryptography [jou04, SOK00, BF01], enabling powerful applications such as identity- and
attribute-based encryption [BF01, Wat05, GPSW06], broadcast encryption [BGW05] and
many others. In their general form, cryptographic multilinear maps are so useful that we
had a body of work examining their applications even before we knew of any candidate
constructions to realize them [BS03, RS09, PTT10, Rot13].

Formally, a non-degenerate map between order-𝑞 algebraic groups, 𝑒 : 𝐺𝑑 → 𝐺𝑇 , is
𝑑−multilinear if for all 𝑎1, . . . , 𝑎𝑑 ∈ Z𝑞 and 𝑔 ∈ 𝐺,

𝑒(𝑔𝑎1 , . . . , 𝑔𝑎𝑑) = 𝑒(𝑔, . . . , 𝑔)𝑎1·...·𝑎𝑑 .

We say that the map 𝑒 is “cryptographic” if we can evaluate it efficiently and at least the
discrete-logarithm in the groups 𝐺,𝐺𝑇 is hard.

In a recent breakthrough, Garg, Gentry and Halevi [GGH13a] gave the first candidate
construction of multilinear maps from ideal lattices, followed by a second construction by
Coron, Lepoint and Tibouchi [CLT13] over the integers. (Some optimizations to the GGH
scheme were proposed in [LSS14]). Due to certain differences between their construction
and “ideal" multilinear maps, Garg et al. (and Coron et al.) called their constructions
“graded encoding schemes.” These graded encoding schemes realize an approximate version
of multilinear maps with no explicit algebraic groups, where the transformation 𝑎 ↦→ 𝑔𝑎 is
replaced by some (randomized) encoding function.

Moreover, these constructions are “graded”, in the sense that they allow intermediate
computation. One way to think of these intermediate computations is as a sequence of levels
(or groups) 𝐺1, . . . , 𝐺𝑑 and a set of maps 𝑒𝑖𝑗 such that for all 𝑔𝑎𝑖 ∈ 𝐺𝑖, 𝑔

𝑏
𝑗 ∈ 𝐺𝑗 (satisfying

𝑖 + 𝑗 ≤ 𝑑), 𝑒𝑖𝑗(𝑔𝑎𝑖 , 𝑔𝑏𝑗) = 𝑔𝑎𝑏𝑖+𝑗. Asymmetric variant of graded multilinear maps provides
additional structure on how these encodings can be combined. Each encoding is assigned
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with a set of levels 𝑆 ⊆ [𝑁 ]. Given two encodings 𝑔𝑎𝑆, 𝑔𝑏𝑆′ the map allows to compute 𝑔𝑎𝑏𝑆∪𝑆′

only if 𝑆 ∩ 𝑆 ′ = ∅.
Both [GGH13a] and [CLT13] constructions begin from some variant of homomorphic

encryption and use public-key encryption as the encoding method. The main new ingredient,
however, is that they also publish a defective version of the secret key, which cannot
be used for decryption but can be used to test if a ciphertext encrypts a zero. (This
defective key is called the “zero-test parameter”.) Over the last two years, the applications
of (graded) multilinear maps have expanded much further, supporting applications such
as witness encryption, general-purpose obfuscation, functional encryption, and many more
[GGSW13, GGH+13c, GGH+13b, BGG+14, BZ14].

5.1 Our Contributions, Techniques and Applications

We present a new “graph-induced” variant of multilinear maps. In this variant, the
multilinear map is defined with respect to a directed acyclic graph. Namely, encoded value
are associated with paths in the graph, and it is only possible to add encoding relative to
the same paths, or to multiply encodings relative to “connected paths” (i.e., one ends where
the other begins) Our candidate construction of graph-induced multilinear maps does not
rely on ideal lattices or hard-to-factor integers. Rather, we use standard random lattices
such as those used in LWE-based cryptography. We follow a similar outline to the previous
constructions, except our instance generation algorithm takes as input a description of a
graph. Furthermore, our zero-tester does not include any secrets about the relevant lattices.
Rather, in our case the zero-tester is just a random matrix, similar to a public key in common
LWE-based cryptosystems.

Giving up the algebraic structure of ideal lattices and integers could contribute to
a better understanding of the candidate itself, reducing the risk of unforeseen algebraic
crypt-analytical attacks. On the flip side, using our construction is sometimes harder than
previous construction, exactly because we give up some algebraic structure. For that same
reason, we were not able so far to reduce any of our new construction to “nice” hardness
assumptions, currently they are all just candidate constructions, that withstood our repeated
cryptanalytic attempts at breaking them. Still we believe that our new construction is a well
needed addition to our cryptographic toolbox, providing yet another avenue for implementing
multilinear maps.

Our Techniques Our starting point is the new homomorphic encryption (HE) scheme of
Gentry, Sahai and Waters [GSW13]. The secret key in that scheme is a vector a ∈ Z𝑚

𝑞 ,
and a ciphertext encrypting 𝑚 ∈ Z𝑞 is a matrix C ∈ Z𝑚×𝑚

𝑞 with small entries such that
C · a = 𝑚 · a+ e for some small error vector e. In other words, valid ciphertexts all have the
secret key a as an “approximate eigenvector", and the eigenvalue is the message. Given the
secret eigenvector a, decoding arbitrary 𝑚’s becomes easy.

This HE scheme supports addition and multiplication, but we also need a public equivalent
of the approximate eigenvector for zero-testing. The key idea is to replace the “approximate
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eigenvector” with an “approximate eigenspace” by increasing the dimensions. Instead of
having a single approximate eigenvectors, our “approximate eigenspace" is described by 𝑛
vectors A ∈ Z𝑛×𝑚

𝑞 . The approximate eigenvalues will not merely be elements of Z𝑞, but
rather matrices S ∈ Z𝑛×𝑛

𝑞 with small entries. An encoding of S is a matrix C ∈ Z𝑚×𝑚 with
small entries such that

C𝑇 ·A𝑇 = A𝑇 · S + E

for small noise matrix E ∈ Z𝑚×𝑛
𝑞 . In other words, C is a matrix that maps any column vector

in A to a vector that is very close to the span of A. In that sense, A is an approximate
eigenspace. In the HE scheme, a was a secret key that allowed us to easily recover 𝑚.
However, for the eigenspace setting, assuming A is just a uniformly random matrix and S is
a random small matrix, A𝑇 · S + E is an LWE instance that looks uniform even when given
A.

Overview of Our Construction. Our construction is parametrized by a directed acyclic
graph 𝐺 = (𝑉,𝐸). For each node 𝑣 ∈ 𝑉 , we assign a random matrix A𝑣 ∈ Z𝑛×𝑚

𝑞 . Any path
𝑢 ; 𝑣 (which can be a single edge) can be assigned with an encoding D ∈ Z𝑚×𝑚

𝑞 of some
plaintext secret S ∈ Z𝑛×𝑛

𝑞 satisfying

D𝑇 ·A𝑇
𝑢 = A𝑇

𝑣 · S + E (5.1)

for some small error E ∈ (𝜒)𝑚×𝑛.
Adding and multiplying encodings corresponds to addition and multiplication of matrices.

Addition of encodings can only be performed relative to the same path 𝑢; 𝑣. For example,
given encodings D1,D2 at path 𝑢; 𝑣, we have that:

(D𝑇
1 + D𝑇

2 ) ·A𝑇
𝑢 ≈ A𝑇

𝑣 · S1 + A𝑇
𝑣 · S2 = A𝑇

𝑣 · (S1 + S2).

Multiplication of encodings can only be performed when they form a complete path. That
is, given encodings D1 and D2 relative to paths 𝑢; 𝑣 and 𝑣 ; 𝑤 respectively, we have:

D𝑇
2 ·D𝑇

1 ·A𝑇
𝑢 = D𝑇

2 · (A𝑇
𝑣 · S1 + E1)

= (A𝑇
𝑤 · S2 + E2) · S1 + D𝑇

2 · E1 = A𝑇
𝑤 · S2 · S1 + E2 · S1 + D𝑇

2 · E1⏟  ⏞  
E′

(5.2)

where E′ is small since the errors and matrices S1,D2 have small entries. Furthermore, it
is possible to compare two encodings with the same sink node. That is, given D1 and D2

relative to paths 𝑢 ; 𝑣 and 𝑤 ; 𝑣, it is sufficient to check if D𝑇
1 ·A𝑇

𝑢 −D𝑇
2 ·A𝑇

𝑤 is small
since if S1 = S2, then we have

D𝑇
1 ·A𝑇

𝑢 −D𝑇
2 ·A𝑇

𝑤 = (A𝑇
𝑣 · S1 + E1)− (A𝑇

𝑣 · S2 + E2) = E1 − E2 (5.3)

Hence, the random matrices A𝑢,A𝑤 ∈ Z𝑞𝑛×𝑚, which are commonly available in the public
parameters, is sufficient for comparison and zero-testing.
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As we explain in 5.4, generating the encoding matrices requires knowing a trapdoor for
the matrices A𝑖. But for the public-sampling setting, it is possible to generate encodings of
many random matrices during setup, and later anyone can take a random linear combinations
of them to get “fresh” random encodings.

We remark that since S needs to be small in Eqn. (5.2), our scheme only supports
encoding of small plaintext elements, as opposed to arbitrary plaintext elements as in previous
schemes.1 Another difference is that in the basic construction our plaintext space is a non-
commutative ring (i.e. square matrices). We extend to the commutative setting in 5.4.2.

Variations and parameters. We also describe some variations of the basic scheme above,
aimed at improving the parameters or offering different trade-offs. One standard way of
improving parameters is to switch to a ring-LWE setting, where scalars are taken from a
large polynomial ring (rather than being just integers), and the dimension of vectors and
matrices is reduced proportionally. In our context, we can also use the same approach to
move to a commutative plaintext space, see 5.4.2.

5.1.1 Applications

Our new constructions support many of the known cryptographic uses of graded encoding.
Here we briefly sketch two of them.

Non-interactive Multipartite Key-Exchange. Consider 𝑘-partite key-exchange. We
design a graph in a star topology with 𝑘-branches each of length 𝑘 − 1 nodes. All branches
meet at the common sink node A0. For each branch 𝑖, we associate encodings of small
LWE secrets 𝑡1, . . . , . . . , 𝑡𝑘 in a specific order. The public parameters consists of many such
plaintext values 𝑡𝑖s and their associated encodings. Each player 𝑗 takes a random linear
combination of these encodings. It stores one of the encodings along the path as the secret
key and broadcasts the rest of to other players. Assume some canonical ordering of the
players. Each player computes the 𝑘 − 1 product of the other players’ encodings along the
path with index 𝑗 and its own secret encoding. This yields an encoding D of T* =

∏︀
𝑖∈[𝑘] 𝑠𝑖,

satisfying
D𝑇 ·A𝑇

𝑗,1 = A𝑇
0 ·

∏︁
𝑖∈[𝑘]

𝑠𝑖 + noise

And the players obtain the shared secret key by applying a randomness extractor on the
most significant bits.

Branching-program obfuscation. Perhaps the “poster application” of cryptographic
graded encodings is to obtain general-purpose obfuscation [GGH+13c, BR14a, BGK+14,
PST14, GLSW14], with the crucial step being the use of graded encoding to obfuscate

1The only exception is that the leftmost plaintext matrix S in a product could encode a large element,
as Eqn. (5.2) is not affected by the size of S1. Similarly the rightmost encoding matrix D in a product need
not be small. We do not use these exceptions in the current paper, however.
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branching programs. These branching programs are represented as a sequence of pairs of
encoded matrices, and the user just picks one matrix from each pair and then multiply them
all in order.

This usage pattern of graded encoding fits very well into our graph-induced scheme
since these matrices are given in a pre-arranged order. We describe a candidate obfuscation
construction from our multilinear map based on a path graph. Informally, to obfuscate
a length-𝐿 matrix branching program {B𝑖,𝑏}, we first perform Kilian’s randomization and
then encode values R−1𝑖−1B𝑖,0R𝑖 and R−1𝑖−1B𝑖,1R𝑖 relative to the edge 𝑖. The user can then
compute an encoding of a product of matrices corresponding to its input. If the product∏︀

𝑖∈[𝐿] B𝑖,𝑥vari
= I, then the user obtains an encoding D satisfying:

D𝑇 ·A𝑇
0 = A𝑇

𝐿 · I + noise

Given A𝑇
𝐿 · I + noise′ in the public parameters (or its encoding), the user can then learn

the result of the computation by a simple comparison. We note that our actual candidate
construction is more involved as we deploy additional safeguards from the literature (See
Section 5.6.2).

5.1.2 Chapter Organization

In Section 5.2, we provide some background and present the syntax of graph-induced
multilinear maps. In Section 5.4, we describe our basic construction in the non-commutative
variant. In Subsection 5.4.2 we show how to extend our basic construction to commutative
variant. In Section 5.5, we analyze the security of our construction. In Section 5.6 we present
applications of our construction to key-exchange and obfuscation.

5.2 Preliminaries

Extractors. An efficient (𝑛,𝑚, ℓ, 𝜖)-strong extractor is a poly-time algorithm Extract :
{0, 1}𝑛 → {0, 1}ℓ such that for any random variable 𝑊 over {0, 1}𝑛 with min-entropy 𝑚, it
holds that the statistical distance between (Extract𝛼(𝑊 ), 𝛼) and (𝑈ℓ, 𝛼) is at most 𝜖. Here,
𝛼 denotes the random bits used by the extractor. Universal hash functions [CW79, WC81]
can extract ℓ = 𝑚 − 2 log 1

𝜖
+ 2 nearly random bits, as given by the leftover hash lemma

[HILL99]. This will be sufficient for our applications.

Leftover Hash Lemma Over Gaussians Recent works [AGHS13, AR13] considered
the setting where the columns of a matrix X ∈ Z𝑡×𝑘 are drawn independently from a “wide
enough” Gaussian distribution over a lattice 𝐿 ⊂ Z𝑡, x𝑖 ← 𝐷𝐿,𝑆. Once these columns are
fixed, we consider the distribution 𝒟X,𝜎, induced by choosing an integer vector r from a
discrete spherical Gaussian over Z𝑡 with parameter 𝜎 and outputting 𝑦 = X𝑇 r, 𝒟X,𝜎 :=
{X𝑇 r : r ← 𝐷Z𝑡,𝜎}. It turns out that with high probability over the choice of X, the
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distribution 𝒟X,𝜎 is statistically close to ellipsoid Gaussian 𝐷𝐿,𝜎X (and moreover the singular
values of X are of size roughly 𝜎

√
𝑡).

Theorem 5.2.1 ([AGHS13, AR13]). For integers 𝑘 ≥ 1, 𝑡 = poly(𝑘), 𝜎 = Ω(
√︀

log(𝑘/𝜖)) and
𝜎′ = Ω̃(𝑘𝜎

√︀
log(1/𝜖)), we have that with probability 1 − 2−𝑘 over the choice X ← (𝒟Z𝑘,𝜎)𝑡

that the statistical distance between 𝒟X,𝜎′ and 𝐷Z𝑘,𝜎′X𝑇 is smaller than 𝜖.

5.3 Graded Multilinear Encodings

The notion of graded encoding scheme that we relaize is similar (but not exactly identical) to
the GGH notion from [GGH13a]. Very roughly, a graded encoding scheme for an algebraic
“plaintext ring 𝑅” provides methods for encoding ring elements and manipulating these
encodings. Namely we can sample random plaintext elements together with their encoding,
can add and multiply encoded elements, can test if a given encoding encodes zero, and can
also extract a “canonical representation” of a plaintext element from an encoding of that
element.

Syntax of Graph-Induced Graded Encoding Schemes

There are several variations of graded-encoding systems in the literature, such as pub-
lic/secret encoding, with/without re-randomization, symmetric/asymmetric, etc. Below we
define the syntax for our scheme, which is still somewhat different than all of the above.
The main differences are that our encodings are defined relative to edges of a directed graph
(as opposed to levels/sets/vectors as in previous schemes), and that we only encode “small
elements” from the plaintext space. Below we provide the relevant definitions, modifying the
ones from [GGH13a].

Definition 5.3.1 (Graph-Induced Encoding Scheme). A graph-based graded encoding
scheme with secret sampling consists of the following (polynomial-time) procedures, 𝒢es =
(PrmGen, InstGen, Sample,Encode, add, neg,mult,ZeroTest,Extract):

∙ PrmGen(1𝜆, 𝐺, 𝒞): The parameter-generation procedure takes the security parameter 𝜆,
underlying directed graph 𝐺 = (𝑉,𝐸), and the class 𝒞 of supported circuits. It outputs
some global parameters of the system gp, which includes in particular the graph 𝐺, a
specification of the plaintext ring 𝑅 and also a distribution 𝜒 over 𝑅.

For example, in our case the global parameters consists of the dimension 𝑛 of matrices,
the modulus 𝑞 and the Gaussian parameter 𝜎.

∙ InstGen(gp): The randomized instance-generation procedure takes the global parame-
ters gp, and outputs the public and secret parameters sp, pp.

∙ Sample(pp): The sampling procedure samples an element in the the plaintext space,
according to the distribution 𝜒.

104



∙ Encode(sp, 𝑝, 𝛼): The encoding procedure takes the secret parameters pp, a path 𝑝 =
𝑢 ; 𝑣 in the graph, and an element 𝛼 ∈ 𝑅 from the support of the Sample procedure,
and outputs an encoding 𝑢𝑝 of 𝛼 relative to 𝑝. 2

∙ neg(pp, 𝑢), add(pp, 𝑢, 𝑢′), mult(pp, 𝑢, 𝑢′). The arithmetic procedures are deterministic,
and they all take as input the public parameters and use them to manipulate encodings.

Negation takes an encoding of 𝛼 ∈ 𝑅 relative to some path 𝑝 = 𝑢 ; 𝑣 and outputs
encoding of −𝛼 relative to the same path. Addition takes 𝑢, 𝑢′ that encode 𝛼, 𝛼′ ∈ 𝑅
relative to the same path 𝑝, and outputs an encoding of 𝛼+𝛼 relative to 𝑝. Multiplication
takes 𝑢, 𝑢′ that encode 𝛼, 𝛼′ ∈ 𝑅 relative to consecutive paths 𝑝 = 𝑢; 𝑣 and 𝑝′ = 𝑣 ;

𝑤, respectively. It outputs an encoding of 𝛼 · 𝛼′ relative to the combined path 𝑢; 𝑤.

∙ ZeroTest(pp, 𝑢): Zero testing is a deterministic procedure that takes the public
parameters pp and an encoding 𝑢 that is tagged by its path 𝑝. It outputs 1 if 𝑢 is
an encoding of zero and 0 if it is an of a non-zero element.

∙ Extract(pp, 𝑢): The extraction procedure takes as input the public parameters pp and
an encoding 𝑢 that is tagged by its path 𝑝. It outputs a 𝜆-bit string that serves as a
“random canonical representation” of the underlying plaintext element 𝛼 (see below).

Correctness. The graph 𝐺, in conjunction with the procedures for sampling, encoding,
and arithmetic operations, and the class of supported circuits, implicitly define the set 𝑆𝐺

of “valid encodings” and its partition into sets 𝑆(𝛼)
𝐺 of “valid encoding of 𝛼”.

Namely, we consider arithmetic circuits whose wires are labeled by paths in 𝐺 in a way
that respects the permitted operations of the scheme (i.e., negation and addition have all
the same labels, and multiplication has consecutive input paths and the output is labeled by
their concatenation). Then 𝑆𝐺 consists of all the encoding that can be generated by using
the sampling/encoding procedures to sample plaintext elements and compute their encoding,
then compute the operations of the scheme according to Π, and collect the encoding at the
output of Π. An encoding 𝑢 ∈ 𝑆𝐺 belongs to 𝑆(𝛼)

𝐺 is there exists such circuit Π and inputs
for which Π outputs 𝛼 when evaluated on plaintext elements. Of course, to be useful we
require that the sets 𝑆(𝛼)

𝐺 form a partition of 𝑆𝐺.
We can also sub-divide each 𝑆

(𝛼)
𝐺 into 𝑆(𝛼)

𝑝 for different paths 𝑝 in the graph, depending
on the label of the output wire of Π (but here it is not important that these sets are disjoint),
and define 𝑆𝑝 =

⋃︀
𝛼∈𝑅 𝑆

(𝛼)
𝑝 .

Note that the sets 𝑆(𝛼)
𝑝 can be empty, for example in our construction the sampling

procedure only outputs “small” plaintext values 𝛼, so a “large” 𝛽 would have 𝑆(𝛽)
𝑝 = ∅. Below

we denote the set of 𝛼’s with non-empty encoding sets (relative to path 𝑝) by SMALL𝑝
def
=

{𝛼 ∈ 𝑅 : 𝑆
(𝛼)
𝑝 ̸= ∅}, and similarly SMALL𝐺

def
= {𝛼 ∈ 𝑅 : 𝑆

(𝛼)
𝐺 ̸= ∅}.

2See the description below for the meaning of “𝑢𝑝 is an encoding of 𝛼 relative to 𝑝”, formally 𝑢𝑝 is just a
bit string, which is tagged with its path 𝑝.
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We assume for simplicity that the sets SMALL depend only on the global parameters gp
and not the specific parameters sp, 𝑝𝑝. (This assumption holds for our construction and it
simplifies the syntax below.)

We can now state the correctness conditions for zero-testing and extraction. For zero-
testing we require that ZeroTest(pp, 𝑢) = 1 for every 𝑢 ∈ 𝑆(0) (with probability one), and for
every 𝛼 ∈ SMALL𝐺, 𝛼 ̸= 0 it holds with overwhelming probability over instance-generation
that ZeroTest(pp, 𝑢) = 0 for every encoding 𝑢 ∈ 𝑆(𝛼)

𝐺 .
For extraction,we roughly require that Extract outputs the same string on all the

encodings of the same 𝛼, different strings on encodings of different 𝛼’s, and random strings
on encodings of “random 𝛼’s.” Formally, we require the following for any global parameters
gp output by PrmGen:

∙ For any plaintext element 𝛼 ∈ SMALL𝐺 and path 𝑝 in𝐺, with overwhelming probability
over the parameters (sp, pp)← InstGen(gp), there exists a single value 𝑥 ∈ {0, 1}𝜆 such
that Extract(pp, 𝑢) = 𝑥 holds for all 𝑢 ∈ 𝑆(𝛼)

𝑝 .

∙ For any 𝛼 ̸= 𝛼′ ∈ SMALL𝐺 and path 𝑝 in 𝐺, it holds with overwhelming probability
over the parameters (sp, pp) ← InstGen(gp) that for any 𝑢 ∈ 𝑆

(𝛼)
𝑝 and 𝑢′ ∈ 𝑆

(𝛼′)
𝑝 ,

Extract(pp, 𝑢) ̸= Extract(pp, 𝑢′).

∙ For any path 𝑝 in 𝐺 and distribution 𝒟 over SMALL𝑝 with min-entropy 3𝜆 or more, it
holds with overwhelming probability over the parameters (sp, pp) ← InstGen(gp) that
the induced distribution {Extract(pp, 𝑢) : 𝛼 ← 𝒟, 𝑢 ∈ 𝑆

(𝛼)
𝑑 } is nearly uniform over

{0, 1}𝜆.
In some applications these conditions can be weakened. For example we often only need them
to hold for some paths in 𝐺 rather than all of them (e.g., we only care about source-to-sink
paths).

5.3.1 Variations

Public sampling of encoded elements. One useful variation allows a public sampling
procedure that takes as input pp rather than sp and outputs both a plaintext 𝛼 and its
encoding 𝑢𝑝 relative to some path 𝑝. In many cases it is easy to go from secret-encoding to
public sampling. Specifically, given a scheme that supports secret encoding we can augment
the instance-generation procedure by sampling many tuples (𝛼𝑖, 𝑢𝑖) relative to relevant paths
(e.g., the edges in 𝐺) and adding them to the public parameters. Then a public sampling
procedure can just use a subset sum of these tuples as a new sample, which would have some
other distribution 𝜒′.

If the distribution 𝜒 of the secret sampling procedure was uniform over 𝑅, then by the
leftover hash lemma so is the distribution 𝜒′ of the public sampling procedure. Similarly, if 𝜒
was a Gaussian then using the Gaussian leftover-lemma Theorem 5.2.1 also 𝜒′ is a Gaussian
(with somewhat different parameters).

In our construction we have a Gaussian distribution 𝜒, so we can use this method to
transform our scheme to one with a public sampling procedure.
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Re-randomization. In some cases one may want to re-randomize a given encoding with
changing the encoded value or the path in 𝐺, or to compute given a plaintext element
the corresponding encoding relative to come path. Our construction does not support re-
randomization (see 5.5).

5.4 Our Graph-Induced Multilinear Maps
The plaintext space in our basic scheme is the non-commutative ring of matrices 𝑅 = Z𝑛×𝑛

𝑞 ,
later in 5.4.2 we describe a commutative variant. In this section we only deal with correctness
of these schemes, their security is discussed in Section 5.5.

As sketched in the introduction, for the basic scheme we have an underlying directed
acyclic graph 𝐺 = (𝑉,𝐸), we identify a random matrix A𝑣 ∈ Z𝑛×𝑚

𝑞 with each node 𝑣 ∈
𝑉 , and encodings in the scheme are defined relative to paths. A small plaintext matrix
S ∈ 𝑅 is encoded wrt to the path 𝑢 ; 𝑣 via another small matrix D ∈ Z𝑚×𝑚

𝑞 such that
D𝑇 · A𝑇

𝑢 ≈ A𝑇
𝑣 · S. In more detail, we have the following graded encoding scheme 𝒢es =

(PrmGen, InstGen, Sample,Encode, add, neg,mult,ZeroTest,Extract):

∙ PrmGen(1𝜆, 𝐺, 𝒞): On input the security parameter 𝜆, an underlying DAG 𝐺 = (𝑉,𝐸),
and class 𝒞 of supported circuits, we compute:

1. LWE parameters 𝑛,𝑚, 𝑞 and error distribution 𝜒 = 𝐷Z,𝑠.

2. A Gaussian parameters 𝜎 for SamPre.

3. Another parameter 𝑡 for the number of most significant bits used for zero-test and
extraction.

The constraints that dictate these parameters are described in Appendix 4.5.3. The
resulting parameters for a DAG of diameter 𝑑 are 𝑛 = Θ(𝑑𝜆 log(𝑑𝜆)), 𝑞 = (𝑑𝜆)Θ(𝑑),
𝑚 = Θ(𝑛𝑑 log 𝑞), 𝑠 =

√
𝑛, 𝜎 =

√︀
𝑛(𝑑+ 1) log 𝑞, and 𝑡 = ⌊(log 𝑞)/4⌋ − 1. These global

parameters gp (including the graph 𝐺) are given to all the procedures below.

∙ InstGen(gp): Given the global parameters, instance-generation proceeds as follows:

1. Use trapdoor-sampling to generate |𝑉 |matrices with trapdoors, one for each node.

∀𝑣 ∈ 𝑉,
(︀
A𝑣, 𝜏𝑣

)︀
← TrapSamp(1𝑛, 1𝑚, 𝑞)

2. Choose the randomness-extractor seed 𝛽 from a pairwise-independent function
family, and a uniform “shift matrix” Δ ∈ Z𝑚×𝑛

𝑞 .

The public parameters are pp :=
(︀
{A𝑣 : 𝑣 ∈ 𝑉 }, 𝛽,Δ

)︀
and the secret parameters

include also the trapdoors {𝜏𝑣 : 𝑣 ∈ 𝑉 }.

∙ Sample(pp): This procedure just samples an LWE secret S← (𝜒)𝑛×𝑛 as the plaintext.
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∙ Encode(sp, 𝑝,S): On input the matrices A𝑢,A𝑣, the trapdoor 𝜏𝑢, and the small matrix
S, sample an LWE error matrix E𝑖 ← (𝜒)𝑚×𝑛, set V = A𝑇

𝑣 · S + E ∈ Z𝑚×𝑛
𝑞 , and

then use the trapdoor 𝜏𝑢 to compute the encoding D𝑝 s.t. D𝑇
𝑝 · A𝑇

𝑢 = V, D𝑝 ←
SamPre(A𝑢, 𝜏𝑢,V, 𝜎). The output is the plaintext 𝑆 and encoding D𝑝.

∙ The arithmetic operations are just matrix operations in Z𝑚×𝑚
𝑞 :

neg(pp,D) := −D, add(pp,D,D′) := D + D′, and mult(pp,D,D′) := D′ ·D.

To see that negation and addition maintain the right structure, let D,D′ ∈ Z𝑚×𝑚
𝑞 be

two encodings reltive to the same path 𝑢 ; 𝑣. Namely D𝑇 · A𝑇
𝑢 = A𝑇

𝑣 · S + E and
D′𝑇 ·A𝑇

𝑢 = A𝑇
𝑣 · S′ + E′, with the matrices D,D′,E,E′,S,S′ all small. Then we have

−D𝑇 ·A𝑇
𝑢 = A𝑇

𝑣 · (−S) + (−E),

and (D + D′)𝑇 ·A𝑢 = (A𝑇
𝑣 · S + E) + (A𝑇

𝑣 · S′ + E′) = A𝑇
𝑣 · (S + S′) + (E + E′),

and all the matrices −D,−S,−E, D + D′, S + S′, E + E′ are still small. For
multiplication, consider encodings D,D′ relative to paths 𝑣 ; 𝑤 and 𝑢 ; 𝑣,
respectively, then we have

(D′ ·D)𝑇 ·A𝑇
𝑢 = D𝑇 ·

(︀
A𝑇

𝑣 · S′ + E′
)︀

=
(︀
A𝑇

𝑤 · S + E
)︀
· S′ + D𝑇 · E′ = A𝑤 · (S · S′) + (E · S′ + D𝑇 · E′)⏟  ⏞  

E′′

,

and the matrices D ·D′, S · S′, and E′′ are still small.

Of course, the matrices D,S,E all grow with arithmetic operations, but our parameter-
choice enures that for any encoding relative to any path in the graph 𝑢; 𝑣 (of length
≤ 𝑑) we have D𝑇 ·A𝑇

𝑢 = A𝑇
𝑣 · S + E where E is still small, specifically ‖E‖ < 𝑞3/4 ≤

𝑞/2𝑡+1.

∙ ZeroTest(pp,D). Given an encoding D relative to path 𝑢; 𝑣 and the matrix A𝑢, our
zero-test procedure outputs 1 if and only if ‖D𝑇 ·A𝑇

𝑢‖ < 𝑞/2𝑡+1.

∙ Extract(pp,D): Given an encoding D relative to path 𝑢 ; 𝑣, the matrix A𝑢 and
shift-matrix Δ, and the extrator seed 𝛽, we compute D𝑇 ·A𝑇

0 +Δ, collect the 𝑡 most-
significant bits from each entry (when mapped to the interval [0, 𝑞− 1]), and apply the
randomness extractor, outputting

𝑤 := RandExt𝛽
(︀
msb𝑡(D

𝑇 ·A𝑇
𝑢 + Δ)

)︀
5.4.1 Correctness

Correctness of the scheme follows from our invariant, which says that encoding of some
plaintext matrix S relative to any path 𝑢; 𝑣 of legnth ≤ 𝑑 satisfies D𝑇 ·A𝑇

𝑢 = A𝑇
𝑣 · S + E
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for ‖E‖ < 𝑞/2𝑡+1.

Correctness of Zero-Test. An encoding of zero satisfies D𝑇 · A𝑢 = E, hence ‖D𝑇 ·
A𝑇

𝑢‖ < 𝑞/2𝑡+1. On the other hand, since A𝑣 is uniform then for any nonzero S we only get
‖A𝑇

𝑣 · S‖ ≤ 𝑞/2𝑡 with exponentially small probability, and since ‖E‖ < 𝑞/2𝑡+1 then

‖D𝑇 ·A𝑇
𝑢‖ ≥ ‖A𝑇

𝑣 · S‖ − ‖E‖ > 𝑞/2𝑡 − 𝑞/2𝑡+1 ≥ 𝑞/2𝑡+1.

Hence with overwhelming probability over the choise of A𝑣, our zero-test will output 0 on
all the encoding of S.

Correctness of Extraction. We begin by proving that for any plaintext matrix S and
any encoding D of S (relative to 𝑢; 𝑣), with overwhelming probability over the parameters
we have that msb𝑡(D

𝑇 ·A𝑇
𝑢 + Δ) = msb𝑡(A

𝑇
𝑣 · S + Δ).

Since the two matrices M = A𝑇
𝑣 · S + Δ and M′ = D𝑇 ·A𝑢 + Δ differ in each entry by

at most 𝑞/2𝑡+1 modulo 𝑞, they can only differ in their top 𝑡 bits due to the mod-𝑞 reduction,
i.e., if for some entry we have [M]𝑘,ℓ ≈ 0 but [M′]𝑘,ℓ ≈ 𝑞 or the other way around. (Recall
that here we reduce mod-𝑞 into the interval [0, 𝑞 − 1].) Clearly, this only happens when
M ≈M′ ≈ 0 (mod 𝑞), in particular we need

− < 𝑞/2𝑡+1 < [A𝑇
𝑣 S + Δ]𝑘,ℓ < 𝑞/2𝑡+1.

For any S and A𝑣, the last condition occurs only with exponentially small probability over
the choise of Δ. We conclude that if all the entries of |A𝑇

𝑣 · S + Δ| are larger than 𝑞/2𝑡+1

(modulo 𝑞), which happens with overwhelming probability, then for all level-𝑖 encodings
D of S, the top 𝑡 bits of D𝑇 ·A𝑇

𝑢 agree with the top 𝑡 bits of A𝑇
𝑣 · S. We call a plaintext

matrix S “𝑣-good” if the above happens, and denote their set by GOOD𝑣. With this notation,
the arguments above say that for any fixed S, 𝑣, we have S ∈ GOOD𝑣 with overwhelming
probability over the instance-generation randomness.

Same input implies same extracted value. For any plaintext matrix S ∈ GOOD𝑣,
clearly all its encodings relative to 𝑢; 𝑣 agree on the top 𝑡 bits of D𝑇 ·A𝑇

𝑢 (since they
all agree with A𝑇

𝑣 · S). Hence they all have the same extracted value.

Different inputs imply different extracted values. If D,D′ encode different plaintext
matrices then D−D′ is an encoding of non-zero, hence ‖(D−D′)𝑇 ·A𝑇

𝑢‖ ≫ 𝑞/2𝑡 except
with negligible probability, D𝑇 ·A𝑇

𝑢 + Δ and D′𝑇 ·A𝑇
𝑢 + Δ must differ somewhere in

their top 𝑡 bits. Since we use universal hashing for our randomness extractor, then
with high probability (over the hash function 𝛽) we get RandExt𝛽

(︀
msb𝑡(D ·A𝑢+Δ)

)︀
̸=

RandExt𝛽
(︀
msb𝑡(D

′𝑇 ·A𝑇
𝑢 + Δ)

)︀
.

Random input implies random extracted value. Fix some high-entropy distribution
𝒟 over inputs S. Since for every S we have Pr[S ∈ GOOD𝑣] = 1−negl(𝜆) then also with
overwheling probability over the parameters we have PrS←𝒟[S ∈ GOOD𝑣] = 1−negl(𝜆).
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It is therefore enough to show that RandExt𝛽(msb𝑡(A
𝑇
𝑣 · S + Δ)) is nearly uniform on

S← 𝒟.

We observe that the function 𝐻(S) = A𝑇
𝑣 ·S+Δ is itself pairwise independent on each

column of the output separately, and therefore so is the function 𝐻 ′(S) = msb𝑡(𝐻(S)).
3 We note that 𝐻 ′ has very low collision probability, its range has many more than
6𝜆 bits in every column, so for every S ̸= S′ we get Pr𝐻′ [𝐻 ′(S) = 𝐻 ′(S′)] ≪ 2−6𝜆.
Therefore 𝐻 ′ is a good condenser, i.e., if the min-entropy of 𝒟 is above 3𝜆, then with
overwhelming probability over the choise of𝐻, the min-entropy of𝐻 ′(𝒟) is above 3𝜆−1
(say). By the extraction properties of RandExt, this implies that RandExt𝛽(𝐻 ′(𝒟)) is
close to uniform (whp over 𝛽).

5.4.2 A Commutative Variant

In some applications it may be convenient or even necessary to work with a commutative
plaintext space. Of course, simply switching to a commutative sub-ring of the ring of matrices
(such as 𝑠 · 𝐼 for a scalar 𝑠 and the identity 𝐼) would be insecure, but we can make it work
by moving to a larger ring.

Cyclotomic rings. We switch from working over the ring of integers to working over
polynomial rings, 𝑅 = Z[𝑥]/(𝐹 (𝑋)) and 𝑅𝑞 = 𝑅/𝑞𝑅 for some degree 𝑛 irreducible integer
polynomial 𝐹 (𝑋) ∈ Z[𝑋] and an integer 𝑞 ∈ Z. Elements of this ring correspond to degree-
(𝑛 − 1) polynomials, and hence they can be represented by 𝑛-vectors of integers in some
convenient basis. The norm of a ring element is the norm of its coefficient vector, and this can
be extended as usual for norm of vectors and matrices over 𝑅. Addition and multiplication
are just polynomial addition and multiplication modulo 𝐹 (𝑋) (and also modulo 𝑞 when
talking about 𝑅𝑞).

As usual, we need a ring where the norm of a product is not much larger than the
product of the norms, and this can be achieved for example by using 𝐹 = Φ𝑀(𝑋), the 𝑀 ’th
cyclotomic polynomial (of degree 𝑛 = 𝜑(𝑀)). All the required operations and lemmas that
we need (such as trapdoor and pre-image sampling etc.) can be extended also to this setting,
see e.g. [LPR13].

The construction remains nearly identical, except all operations are now performed over
the rings 𝑅 and 𝑅𝑞 and the dimensions are changed to match. We now have the “matrices”
A𝑣 ∈ 𝑅1×𝑚

𝑞 with only one row (and similarly the error matrices are E ∈ 𝑅𝑚×1
𝑞 ), and the

plaintext space is 𝑅𝑞 itself. An encoding of plaintext element 𝑠 ∈ 𝑅𝑞 relative to path 𝑢; 𝑣
is a small matrix D ∈ 𝑅𝑚×𝑚

𝑞 such that

D𝑇 ·A𝑇
𝑢 = A𝑇

𝑣 · 𝑠+ E

where E′ is some small error term. As before, we only encode small plaintext elements, i.e.,

3If 𝑞 is not a power of two then 𝐻 ′ does not produce uniformly random 𝑡-bit strings. But still its outputs
on any two S′ ̸= S are independent, and each has almost full (min-)entropy, which sufficies for our purposes.
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the sampling procedure draws 𝑠 from a Gaussian distribution with small parameter. The
operations all remain the same as in the basic scheme.

We emphasize that it is the plaintext space that is commutative, not the space of
encoding. Indeed, if we have D,D′ that encode 𝑠, 𝑠′ relative to paths 𝑣 ; 𝑤 and 𝑢 ; 𝑣,
respectively, we can only multiply them in the order D′ ·D. Multiplying in the other order is
inconsistent with the graph 𝐺 and hence is unlikely to yield a meaningful result. What makes
the symmetric scheme useful is the ability to multiply the plaintext elements in arbitrary
order. For example for D,D′ that encode 𝑠, 𝑠′ relative to paths 𝑢 ; 𝑤 and 𝑣 ; 𝑤, we can
compute either D𝑇 ·A𝑇

𝑢 · 𝑠′ or D′𝑇 ·A𝑇
𝑣 · 𝑠 and the results will both be close A𝑇

𝑣 𝑐𝑑𝑜𝑡𝑠𝑠
′ (and

hence also close to each other).

5.4.3 Public Sampling and Some Other Variations

As mentioned in Appendix 5.3, we can provide a public sampling procedure relative to any
desired path 𝑝 = 𝑢 ; 𝑣 by publishing with the public parameters a collection of pairs
generated by the secret sampling procedure above, {(S𝑘,D𝑘) : 𝑘 = 1, . . . , ℓ} (for some large
enough ℓ). The public sampling procedure then takes a random linear combination of these
pairs as a new sample, namely it chooses r← 𝐷Zℓ,𝜎′ and compute the encoding pair as:

(S,D) :=

(︂∑︁
𝑖∈[ℓ]

r𝑖S𝑖 ,
∑︁
𝑖∈[ℓ]

r𝑖D𝑖

)︂
.

It is easy to see that the resulting D encodes S relative to the edge 𝑒. Also by Theorem 5.2.1,
the plaintext matrix S is distributed according to a Gaussian distribution whp.

We note that in most applications it is not necessary to include in the public parameters
the matrices for all the nodes in the graph. Indeed we typically only need the matrices for
the source nodes in the DAG in order to preform zero-testing or extraction.

Some Safeguards. Since our schemes are graph-based, and hence the order of products
is known in advance, we can often provide additional safeguards using Kilian-type random-
ization [Kil88] “on the encoding side”. Namely, for each internal node 𝑣 in the graph we
choose a random invertible 𝑚 ×𝑚 matrix modulo 𝑞 R𝑣, and for the sinks and sources we
set R𝑣 = 𝐼. Then we replace each encoding C relative to the path 𝑢 ; 𝑣 by the masked
encoding C′ := R−1𝑢 ·C ·R𝑣.

Clearly, this randomization step does not affect the product on any source-to-sink path
in the graph, but the masked encodings relative to any other path no longer consist of small
entries, and this makes it harder to mount the attacks from 5.5. On the down side, it now
takes more bits to represent these encodings.

Other safeguards of this type includes the observations that encoding matrices relative
to paths that end at a sink node need not have small entries since the size of the last matrix
on a path does not contribute to the size of the final error matrix. Similarly the plaintext
elements that re encoded on paths that begin at source nodes need not be small, for the
same reason.
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We remark that applying the safeguards from above comes with a price tag: namely the
encoding matrices no longer consist of small entries, hence it takes more bits to represent
them.

Finally, we observe that sometimes we do not need to give explicitly the matrices A𝑢

corresponding to source nodes, and can instead “fold them” into the encoding matrices.
That is, instead of providing both A and C such that B = D𝑇 ·A𝑇 ≈ A′𝑇 ·S, we can publish
only the matrix B and keep A,D hidden. This essentially amounts to shortening the path
by one, starting it at the matrix B. (Of course, trying to repeat this process and further
process the path will lead to exponential growth in the number of matrices that we need to
publish.)

5.5 Cryptanalysis

Below we describe several attacks and “near attacks” on some variations of our scheme, these
attacks guided our choices in designing these scheme.

5.5.1 Encoding of Zero is a Weak Trapdoor

The main observation in this section is that an encoding of zero relative to a path 𝑢 ; 𝑣
can sometimes be used as a weak form of trapdoor for the matrix A𝑢. Recall from [GPV08]
that a full-rank 𝑚 ×𝑚 matrix T with small entries satisfying T𝑇A𝑇 = 0 (mod 𝑞) can be
used as a trapdoor for the matrix A as per Lemma 2.4.1. An encoding of zero relative the
path 𝑢; 𝑣 is a matrix C such that C𝑇 ·A𝑇

𝑢 = E (mod 𝑞) for a small matrix E. This is not
quite a trapdoor, but it appears close and indeed we show that if can often be used as if it
was a real trapdoor.

Let us denote by A′𝑇𝑢 = (A𝑢/𝐼)𝑇 the (𝑚 + 𝑛) × 𝑛 matrix whose first 𝑚 rows are those
of A𝑢 and whose last 𝑛 rows are the 𝑛 × 𝑛 identity matrix. Given the matrices A𝑢 and C
as above, we can compute the small matrix E = C𝑇A𝑇

𝑢 mod 𝑞, then set C′ = [C|(−E)] to
be the 𝑚 × (𝑚 + 𝑛) matrix whose first 𝑚 columns are the columns of C and whose last
𝑛 columns are the negation of the columns of E. Clearly C′ is a small matrix satisfying
C′𝑇A′𝑇𝑢 = 0 (mod 𝑞), but it is not a trapdoor yet because it has rank 𝑚 rather than 𝑚+ 𝑛.

However, assume that we have two encodings of zero, relative to two (possibly different)
paths that begin at the same node 𝑢. Then we can apply the procedure above to get two
such matrices C′1 and C′2, and now we have 2𝑚 rows that are all orthogonal to A′𝑇𝑢 mod 𝑞,
and it is very likely that we can find 𝑚+𝑛 among them that are linearly independent. This
gives a full working trapdoor T′𝑢 for the matrix A′𝑢, what can we do with this trapdoor?

Assume now that the application gives us, in addition to the zero encodings for path
that begin with 𝑢, also an encoding of a plaintext elements S ̸= 0 relative to some path that
ends at 𝑢, say 𝑤 ; 𝑢. This is a matrix D such that D𝑇 · A𝑇

𝑤 = A𝑇
𝑢S + E, namely B𝑇 =

D𝑇A𝑇
𝑤 mod 𝑞 is an LWE instance relative to public matrix A𝑢, secret S, and error term E.

Recalling that the plaintext S in our scheme must be small, it is easy to convert B into an
LWE instance relative to matrix A′𝑇𝑢 = (A𝑢/𝐼)𝑇 , for which we have a trapdoor: Simply add
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𝑛 zero rows at the bottom, thus getting B′𝑇 = (B/0)𝑇 , and we have B′𝑇 = A′𝑇𝑢 S + E′, with
E′ = (E/(−S)) a small matrix.4 Given B′ and A′𝑢, in conjunction with the trapdoor T′𝑢, we
can now recover the plaintext S.

We note that a consequence of this attack is that in our scheme it is unsafe for the
application to allow computation of zero-encoding, except perhaps relative to source-nodes
in the graph. As we show in 5.6, it is possible to design applications that get around this
problem.

Extensions. The attacks from above can be extended even to some cases where we are not
given encodings of zero. Suppose that instead we are given pairs {(C𝑖,C

′
𝑖)}𝑖, where the two

encodings in each pair encode the same plaintext S𝑖 relative to two paths with a common
end point, 𝑢 ; 𝑣 and 𝑢′ ; 𝑣. In this case we can use the same techniques to find a “weak
trapdoor” for the concatenated matrix A′ = (A𝑢/A𝑢′) of dimension 2𝑚× 𝑛, using the fact
that [C𝑖|(−C′𝑖)] ·A′ = (A𝑣S𝑖 + E𝑖)− (A𝑣S𝑖 + E′𝑖) = E𝑖 − E′𝑖.

If we are also given a pair (D,D′) that encodes the same element S relative to two paths
that end at 𝑢, 𝑢′, respectively, then we can use these approximate trapdoors to find S, since
(D,D′) (together with the start points of these paths) yield an LWE instance relative to
public matrix A′ and the secret S.

Corollary 1: No Re-randomization. A consequence of the attacks above is that in
our scheme we usually cannot provide encoding-of-zero in the public parameters. Hence the
re-randomization technique by adding encodings of zero usually cannot be used in our case.

Corollary 2: No Symmetric plaintext/encoding pairs. Another consequence of the
attacks above is that at least in the symmetric case it is not safe to provide many pairs
(𝑠𝑖, 𝐶𝑖) s.t. 𝐶𝑖 is an encoding of the scalar 𝑠𝑖 along a path 𝑢 ; 𝑣. The reason is that given
two such pairs (𝑠1, 𝐶1), (𝑠2, 𝐶2) we can compute an encoding of zero along the path 𝑢 ; 𝑣
as 𝑠1𝐶2 − 𝑠2𝐶1.

5.5.2 Recovering Hidden A𝑣’s.

As we noted earlier, in many applications we only need to know the matrices A𝑢 for source
nodes 𝑢 and there is no need to publish the matrices A𝑣 for internal nodes. This raises the
possibility that we might get better security by withholding the A𝑣’s of internal nodes.

Trying to investigate this possibility, we show below two “near attacks” for recovering the
public matrices of internal nodes from those of source nodes in the graph. The first attack
applies to the commutative setting, and is able to recover an approximate version of the
internal matrices (with the approximation deteriorating as we move deeper into the graph).
The second attack can recover the internal matrices exactly, but it requires a full trapdoor

4B′ does not have the right distribution for an LWE instance, but using the trapdoor we can solve the
worst-case BDD, not just the average-case LWE, so the attack still stands.
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for the matrices of the source nodes (and we were not able to extend it to work with the
“approximate trapdoors” that one gets from an encoding of zero).

The conclusion from these “near attacks” is uncertain. Although is still possible that
withholding the internal-node matrices helps security, it seems prudent to examine the
security of candidate applications that use our scheme in a setting where the A𝑣’s are all
public.

Recovering the A𝑣’s in the symmetric setting. For this attack we are given a matrix
A𝑢, and many encodings relative to the path 𝑢; 𝑣, together with the corresponding plaintext
elements (e.g., as needed for the public-encoding variant). Namely, we have A𝑢, small
matrices C1, . . . ,C𝑡 (for 𝑡 > 1) and small ring elements 𝑠1, . . . , 𝑠𝑡 such that C𝑇

𝑗 · A𝑇
𝑢 =

A𝑇
𝑣 · 𝑠𝑗 + E𝑗 holds for all 𝑗, with small E𝑗’s. Our goal is to find A𝑣.
We note that the matrix A𝑣 and the error vectors E𝑗 are only defined upto small additive

factors, since adding 1 to any entry in A𝑣 can be offset by subtracting the 𝑠𝑗’s from the
corresponding entry in the E𝑗’s. Hence the best we can hope for is to solve for A𝑣 upto a
small additive factor (resp. for the E𝑗’s upto a small additive multiple of the 𝑠𝑗’s). Denoting
B𝑗 := C𝑇

𝑗 ·A𝑇
𝑢 = A𝑇

𝑣 · 𝑠𝑗 + E𝑗, we compute for 𝑗 = 1, . . . , 𝑡− 1,

F𝑗 := B𝑗 · 𝑠𝑗+1 −B𝑗+1 · 𝑠𝑗
= (A𝑇

𝑣 · 𝑠𝑗 + E𝑗) · 𝑠𝑗+1 − (A𝑇
𝑣 · 𝑠𝑗+1 + E𝑗+1) · 𝑠𝑗 = E𝑗 · 𝑠𝑗+1 − E𝑗+1 · 𝑠𝑗.

This gives us a non-homogeneous linear system of equations (with the 𝑠𝑗’s and F𝑗’s as
coefficients), which we want to solve for the small solution E𝑗’s. Writing this system explicitly
we have ⎛⎜⎜⎜⎝

[𝑠2] [−𝑠1]
[𝑠3] [−𝑠2]

. . . . . .
[𝑠𝑡] [−𝑠𝑡−1]

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

X1

X2
...

X𝑡−1
X𝑡

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
F1

F2
...

F𝑡−1

⎞⎟⎟⎟⎠ ,

where [𝑠] denotes the 𝑚 × 𝑚 matrix 𝐼𝑚×𝑚 · 𝑠. Clearly this system is partitioned into 𝑚
independent systems, each of the form

⎛⎜⎜⎜⎝
𝑠2 −𝑠1

𝑠3 −𝑠2
. . . . . .

𝑠𝑡 −𝑠𝑡−1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

𝑥1,ℓ
𝑥2,ℓ
...

𝑥𝑡−1,ℓ
𝑥𝑡,ℓ

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
𝑓1,ℓ
𝑓2,ℓ
...
𝑓𝑡,ℓ

⎞⎟⎟⎟⎠ ,

with 𝑥𝑗,ℓ, 𝑓𝑗,ℓ being the ℓ’th entries of the vectors X𝑗,F𝑗, respectively. These systems are
under-defined, and to get the E𝑖’s we need to find small solutions for them. Suppressing the
index ℓ, we denote these systems in matrix form by M𝑥⃗ = 𝑓 , and show how to find small
solutions for them.
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At first glance this seems like a SIS problem so one might expect it to be hard, but here
we already know a small solution for the corresponding homogeneous system, namely the
solution 𝑥𝑗 = 𝑠𝑗 for all 𝑗. Below we assume that the 𝑠𝑗 do not all share a prime factor (i.e.,
that 𝐺𝐶𝐷(𝑠1, 𝑠2, . . . , 𝑠𝑡) = 1), and also that at least one of them has a small inverse in the
field of fractions of 𝑅. (These two conditions hold with good probability, see discussion in
[GGH13a, Sec 4.1].)

To find a small solution for the inhomogeneous system, we begin by computing an
arbitrary solution for it over the ring 𝑅 (not modulo 𝑞). We note that a solution exists
(in particular the 𝐸𝑗’s solve this system over 𝑅 without mod-𝑞 reduction), and we can use
Gaussian elimination in the field of fractions of 𝑅 to find it. Denote that solution that was
found by 𝑔⃗ ∈ 𝑅, namely we have M𝑔⃗ = 𝑓 . 5 Since over 𝑅 this is a (𝑡 − 1) × 𝑡 system then
its solution space is one-dimensional. Hence every solution to this system (and in particular
the small solution that we seek) is of the form 𝑒⃗ = 𝑔⃗ + 𝑠⃗ · 𝑘 for some 𝑘 ∈ 𝑅. 6

Choosing one index 𝑗 such that the element 1/𝑠𝑗 in the field of fractions is small, we
compute a candidate for the scalar 𝑘 simply by rounding, 𝑘′ := −⌊𝑔𝑗/𝑠𝑗⌉, where division
happens in the field of fractions. We next prove that indeed the vector 𝑒′ = 𝑔⃗ + 𝑠⃗ · 𝑘′ is
a small vector over 𝑅. Clearly 𝑒′ ∈ 𝑅𝑡 since 𝑘′ ∈ 𝑅 and 𝑔⃗, 𝑠⃗ ∈ 𝑅𝑡, we next prove that it
must be small by showing that “the right scalar 𝑘” must be close to the scalar 𝑘′ that we
computed. First, observe that 𝑒′𝑗 = 𝑔𝑗 + 𝑠𝑗 · 𝑘′ must be small, since

𝑒′𝑗 = 𝑔𝑗 + 𝑠𝑗 · 𝑘′ = 𝑔𝑗 − ⌊𝑔𝑗/𝑠𝑗⌉ · 𝑠𝑗 = 𝑔𝑗 − (𝑔𝑗/𝑠𝑗 + 𝜖𝑗) · 𝑠𝑗 = −𝜖𝑗 · 𝑠𝑗,

with 𝜖𝑗 the rounding error. Since both 𝜖𝑗 and 𝑠𝑗 are small, then so is 𝑒′𝑗.
Now consider the “real value” 𝑒𝑗, it too is small and is obtained as 𝑔𝑗+𝑠𝑗 ·𝑘 for some 𝑘 ∈ 𝑅.

It follows that 𝑒𝑗−𝑒′𝑗 = 𝑠𝑗 · (𝑘−𝑘′) is small, and since we know that 1/𝑠𝑗 is also small then it
follows that so is 𝑘− 𝑘′ = (𝑒𝑗 − 𝑒′𝑗)/𝑠𝑗. We thus conclude that 𝑒′ = 𝑔⃗+ 𝑘′ · 𝑠⃗ = 𝑒⃗+ (𝑘− 𝑘′) · 𝑒⃗
is also small.

Repeating the same procedure for all the 𝑚 independent systems, we get a small solution
{E′𝑗, 𝑗 = 1, . . . , 𝑡} to the system B𝑗 = A𝑇

𝑣 · 𝑠𝑗 + E′𝑗. Subtracting the E′𝑗’s from the B𝑗’s and
dividing by the 𝑠𝑗’s give us (an approximation of) A𝑣.

Recovering the A𝑣’s using trapdoors. Suppose that we are given A𝑢, encodings C𝑗

and the corresponding plaintext matrices S𝑗, s.t. B𝑗 := C𝑇
𝑗 · A𝑇

𝑢 = A𝑇
𝑣 · S𝑗 + E𝑗 (mod 𝑞)

for small errors E𝑗. Suppose that in addition we are also given a full working trapdoor for
the matrix A𝑣, say, in the form of a small full-rank matrix T over 𝑅 s.t. T𝑇 · A𝑇

𝑣 = 0
(mod 𝑞). We can then use T to recover the errors E𝑗 from the LWE instances B𝑗, which
can be done without knowing A𝑣: Let T−1 be the inverse of T over 𝑅, we compute E𝑗 ←
(T−1)𝑇 · (T𝑇 ·B𝑗 mod 𝑞). Once we have the error matrices E𝑗 we can subtract them and get
the set of equations B𝑗 −E𝑗 = A𝑇

𝑣 · S𝑗 (mod 𝑞), where the entries of A𝑣 are the unknowns.

5Using Gaussian elimination may yield a fractional solution 𝑔′, but we can “round it” to an integral
solution by solving for 𝑘′ the equation 𝑔′ + 𝑠⃗ · 𝑘′ = 0 (mod 1), then setting 𝑔⃗ = 𝑔′ + 𝑠⃗ · 𝑘′.

6In general the scalar 𝑘 may be fractional, but if 𝐺𝐶𝐷(𝑠1, 𝑠2, . . . , 𝑠𝑡) = 1 then 𝑘 must be integral.
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With sufficiently many of these equations, we can then solve for A𝑣.
We note that so far we were unable to extend this attack to using the “weak trapdoor”

that one gets from an encoding of zero wrt paths of the form 𝑣 ; 𝑤. Indeed the procedure
from 5.5.1 for recovering a stronger trapdoor from the weak one relies on knowing A𝑣.

5.6 Applications

5.6.1 Multipartite Key-Agreement

For our first application, we describe a candidate construction for a non-interactive
multipartite key-agreement protocol using the commutative variant of our graph-based
encoding scheme. As is usual with multipartite key-agreement from multilinear maps, each
party 𝑖 is contributing an encoding of some secret 𝑠𝑖 and the shared secret is derived from
an encoding of the product 𝑠 =

∏︀
𝑖 𝑠𝑖. However in our case we need to use extra caution to

protect against the “weak trapdoor attacks” from 5.5.1.
To that end, we design our graph to ensure that the adversary is never given encodings of

the same element on two paths with a common end-point, and also is not given an encoding
and the corresponding plaintext on any edge. For an 𝑘-partite protocol we use a graph
topology of 𝑘 directed chains that meet at a common point, where the contribution of any
given party appears at different edges on different chains (i.e. the first edge on one chain,
the second edge on another, the third edge on a third chain, etc.)

That is, each player 𝑖 has a directed path of matrices, A𝑖,1, . . . ,A𝑖,𝑘+1, all sharing the
same end-point, i.e., A𝑖,𝑘+1 = A0 for all 𝑖. Note that every chain has 𝑘 edges, and for
the chain “belonging” to party 𝑖 we will broadcast on its edges encodings of all the secrets
𝑠𝑗, 𝑗 ̸= 𝑖, but not an encoding of 𝑠𝑖, that last encoding will only be known to party 𝑖. Party 𝑖
will multiply these encodings (the one that only it knows, and all the ones that are publicly
available) to get an encoding of

∏︀
𝑖 𝑠𝑗 relative to the path A𝑖,1 ; A0. Namely, a matrix

D𝑖 such that D𝑇
𝑖 · A𝑇

𝑖,1 ≈ A𝑇
0 ·

∏︀
𝑖 𝑠𝑗. The shared secret is then obtained by applying the

extraction procedure to this D𝑖.
The assignment of which secret is encoded on what edge of what chain is done in a

“round robin” fashion. Specifically, the 𝑖’th secret 𝑠𝑖 is encoded on the 𝑗’th edge of the chain
belonging to party 𝑖′ = 𝑗 − 𝑖 + 1. In other words, the secret that we encode on the edge
A𝑖,𝑗 → A𝑖,𝑗+1 in the graph is 𝑠𝑗−𝑖+1, with index arithmetic modulo 𝑘. An example of the
assignment of secrets to edges for a 4-partite protocol is depicted in Figure 5-1.

Of course, we must publish encodings that would allow the parties to choose their secrets
and provide encodings for them. This means that together with the public parameters
we also publish encodings of many plaintext elements {𝑡𝑖,ℓ : 𝑖 = 1, . . . , 𝑘, ℓ = 1, . . . , 𝑁}
(for a sufficiently large 𝑁), for each 𝑡𝑖,ℓ we publish encoding of it relative to all the edges
A𝑖′,𝑖+𝑖′−1 → A𝑖′,𝑖+𝑖′ for all 𝑖, 𝑖′ (index arithmetic modulo 𝑘+1). Party 𝑖 then chooses random
small coefficients 𝑟𝑖,ℓ and computes its encoding relative to each edge A𝑖′,𝑖+𝑖′−1 → A𝑖′,𝑖+𝑖′ as
the linear combination of the encodings on that edge with the coefficient 𝑟𝑖,ℓ. We are now
ready to describe our scheme 𝒩ℳ𝒦ℰ = (KE.Setup,KE.Publish,KE.Keygen).
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A0

A1,4A1,3A1,2A1,1

A2,4A2,3A2,2A2,1

A3,4 A3,3 A3,2 A3,1

A4,4 A4,3 A4,2 A4,1

𝑠1 𝑠2 𝑠3

𝑠4

𝑠4 𝑠1 𝑠2 𝑠3

𝑠3𝑠4𝑠1

𝑠2

𝑠2𝑠3𝑠4𝑠1

Figure 5-1: Graph for a 4-partite key-agreement protocol.

∙ KE.Setup(1𝜆, 𝑘): The setup algorithm takes as input the security parameter 1𝜆 and the
total number of players 𝑘.

1. Run the parameter-generation and instance-generation of our graph-based encod-
ing scheme for the graph consisting of 𝑘 chains with a common end-point, each
of length 𝑘 edges. Let 𝑒𝑖,𝑗 denote the 𝑗’th edge on the 𝑖’th chain.

2. Using the secret parameters, run the sampling procedure of the encoding scheme
to choose random plaintext elements 𝑡𝑖,ℓ for 𝑖 = 1, . . . , 𝑘 and ℓ = 1, . . . , 𝑁 , and for
each 𝑡𝑖,ℓ compute also an encoding of it relative to all the edges 𝑒𝑖′,𝑗 for 𝑗 = 𝑖+ 𝑖′

(mod 𝑘). Denote the encoding of 𝑡𝑖,ℓ on chain 𝑖′ (relative to edge 𝑒𝑖′,𝑖+𝑖′ mod 𝑘) by
C𝑖,ℓ,𝑖′ .

The public parameters of the key-agreement protocol include the public parameters
of the encoding scheme (i.e., the matrices for all the source nodes A𝑖,1), and also the
encoding matrices {C𝑖,ℓ,𝑖′ : 𝑖, 𝑖′ = 1, . . . , 𝑘, ℓ = 1, . . . , 𝑁} .

∙ KE.Publish(pp, 𝑖) : The 𝑖’th party chooses random small plaintext elements 𝑟𝑖,ℓ ← 𝜒 for
ℓ = 1, . . . , 𝑁 and then sets D𝑖,𝑖′ ←

∑︀
ℓ C𝑖,ℓ,𝑖′ · 𝑟𝑖,ℓ for all 𝑖′. It keeps D𝑖,𝑖 as its secret

and broadcast all the other D𝑖,𝑖′ ’s.

∙ KE.Keygen(pp, 𝑖, sk𝑖, {pub𝑗}𝑗 ̸=𝑖) : Party 𝑖 collects all the matrices D𝑖′,𝑖 (encoding the
secrets 𝑠𝑖′ relative to “its chain” 𝑖) and orders them according to 𝑗 = 𝑖+ 𝑖′. Namely, it
sets F𝑗,𝑖 = D𝑖+𝑗 mod 𝑘,𝑖 for 𝑗 = 1, . . . 𝑘, then computes the product F*𝑖 = (

∏︀𝑘
𝑗=1 𝐹𝑗,𝑖)·A𝑖,1.

Finally, party 𝑖 applies the extraction procedure of the encoding scheme to obtain the
secret key, setting ssk = Extract

(︀
F*𝑖

)︀
.

Security. Unfortunately, we were not able to reduce the security of this candidate scheme
to any “nicer” assumption. As such, at present the only evidence of security that we can
offer is the failure of our attempts to cryptanalyze it.

The basic attack from 5.5.1 does not seem to apply here since the public parameters do
not provide any encoding of zero (not even relative to A0). Similarly, the extended attacks
do not seem to apply since the only common end-point in the graph is A0, and no two paths
that end at A0 include an encoding of the same element.

117



We note that the attacker can use the public parameters to compute an approximate
trapdoors for concatenated matrices of the form (A0 · 𝑡𝑖,ℓ,𝑖′/(−A0)) (or similar), but the
broadcast messages of the parties do not provide LWE instances relative to these matrices.

Finally, we note that as for any other application of this encoding scheme, it seems that
security would be enhanced by applying the additional safeguards that were discussed at
the end of 5.4. That is, we can use Kilian-style randomization on the encoding side, by
choosing 𝑘 invertible matrices for each chain, R𝑖,1, . . . ,R𝑖,𝑘, where the first and last are set
to the identity and the others are chosen at random. Then we can replacing each encoding
matrix C in the public parameters by C′ := R−1 ·C ·R′ using the randomizer matrices R,R′
belonging to the two adjacent nodes. We can also choose the first encoding matrix in each
chain to have large entries.

This has no effect on the product of all the encoding matrices along the 𝑖′-th chain, but
the new matrices C′ no longer have small entries, which seems to aid security. On the down
side, this increases the size of the encodings roughly by a log 𝑞/ log 𝑛 factor.

5.6.2 Candidate Branching-Program Obfuscation

We next describe how to adapt the branching-program obfuscation constructions from
previous work [GGH+13b, BR14b, BGK+14, PST14] to use our encoding schemes. We
remark that on some level this is the simplest type of constructions to adapt to our setting,
since we essentially need only a single chain and there almost no issues of providing zero-
encoding in the public parameters (or encodings of the same plaintext relative to different
nodes in the graph).

Roughly speaking, previous works all followed a similar strategy for obfuscating branching
programs. Starting from a given oblivious branching program, encoded as permutation
matrices, they all applied Kilian’s randomization strategy to randomized these matrices,
then added some extra randomization steps (mostly multiplication by random scalars)
to protect against partial-evaluation and mixed-input attacks, and finally encoded the
resulting matrices relative to specially-designed sets/levels. The specific details of the extra
randomization steps are somewhat different between the previous schemes, but all these
techniques have their counterparts in our setting. Below we explain how to adapt the
randomization techniques from previous work to our setting, and then describe one specific
BP-obfuscation candidate.

Matrices vs. individual elements. Our scheme natively encodes matrices, rather than
individual elements. This has some advantages, for example we need not worry about attacks
that mix and match encoded elements from different matrices. At the same time it also poses
some challenges, in particular some of the prior schemes worked by comparing to zero one
element of the resulting matrix at the end of evaluation, an operation which is not available
in our case.

To be able to examine sub-matrices (or single elements), we adopt the “bookend encoding”
trick from [GGH+13b]. That is, we add to our chain a new source 𝑢* and a new sink 𝑣*, with
edges from 𝑢* to the old source and from the old sink to 𝑣*. On the edge from 𝑢* we encode
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a matrix T which is only nonzero in the columns that we want to examine, and on the edge
to 𝑣* we encode a matrix S which is only nonzero in the rows that we wish to examine.
This way, we should have the matrix T ·U · S encoded relative to a path 𝑢* ; 𝑣*, and that
matrix is only nonzero in the sub-matrix of interest. In the candidate below we somewhat
improve on this by folding the source matrix A𝑢* into the encoding of T, publishing instead
the matrix A𝑇

𝑢* ·T (and in fact making T a single column vector).

Only small plaintexts. In our scheme we can only encode “small plaintext elements”, not
every plaintext element. This is particularly relevant for Kilian randomization technique,
since it requires that we multiply by both R and R−1 for each randomizer matrix R. One
way to get randomizer matrices with both R and R−1 small is using the facts that(︂

I 0
R I

)︂−1
=

(︂
I 0
−R I

)︂
,

(︂
I R
0 I

)︂−1
=

(︂
I −R
0 I

)︂
(︂

0 I
I R

)︂−1
=

(︂
0 I
I −R

)︂
,

(︂
R I
I 0

)︂−1
=

(︂
−R I
I 0

)︂
.

Multiplying a sequence of these types of matrices above yields a high-entropy distribution
of randomizer matrices with the desired property, and seemingly without obvious algebraic
structure. Another family of matrices where both the matrix and its inverse are small are
permutation matrices (and of course we can mix and match these families). Concretely, we
speculate that a randomizer of the form

R = Π1 ·
(︂

0 I
I R1

)︂
· Π2 ·

(︂
I 0
R2 I

)︂
· Π3 ·

(︂
R3 I
I 0

)︂
· Π4 ·

(︂
I R4

0 I

)︂
· Π5 (5.4)

(with the Π𝑖’s random permutations and the R𝑖’s random small matrices) has sufficient
entropy and lack of algebraic structure to server as randomizers for our scheme.

We note that although these randomizers are far from uniform, there may still be hope of
using some of the tools developed in [BR14b, BGK+14, PST14] (where the analysis includes
a reduction to Kilian’s information-theoretic argument). This is because the matrices before
randomization are permutation matrices, and hence the random permutations Π𝑖 can be used
to perfectly randomize them. In this way, one can view the R𝑖’s are merely “safeguards” to
protect against possible weaknesses in the encoding scheme, and the Π𝑖’s are “ideal model
randomizers” than can be used in an ideal-model analysis. So far we did not attempt such
analysis, however.

Another way to introduce Kilian-type rerandomization in our setting is the aforemen-
tioned option of applying it “on the encoding side,” i.e., choosing random 𝑚×𝑚 invertible
matrices P modulo 𝑞 and set C′ ← P−1 ·C ·P′.

Multiplicative binding and sraddling sets. Another difference between our setting
and that of GGH or CLT is that the previous schemes support encoding relative to arbitrary
subsets of a universe set, so there are exponentially many potential sets to use. In our
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scheme the encoding is relative to edges of a given graph, and there can be only polynomial
many of them. This difference seems particularly critical in the design of sraddling sets
[BGK+14, PST14].

On a second look, however, this issue is more a question of modeling, rather than a real
difference. The different encoding sets in the “asymmetric variants” of [GGH13a, CLT13]
are obtained just by multiplying by different random secret constants (e.g., the 𝑧𝑖’s from
GGH), and we can similarly multiply our encoding matrices by such random constants
mod 𝑞 (especially when working over a large polynomial ring). We use that option in the
candidate scheme that we describe below.

We note that similar effects can be obtained by the multiplicative binding technique
of [GGH+13b]. Roughly speaking, the main difference between multiplicative binding and
sraddling sets is that the former multiplies by constants “on the plaintext side” while the
latter multiplies “on the encoding side.” In our setting we can do both, and indeed it seems
prudent to do so.

A Concrete BP-Obfuscation Candidate

For our concrete candidate below we work over a large polynomial ring of dimension 𝑘, and
we will use small-dimension matrices over this ring (roughly as high as the dimension of the
underlying branching program).

Let Sym(𝑤) be the set of 𝑤×𝑤 permutation matrices and consider a length-𝑛 branching
program over ℓ bit inputs:

BP = {(ind(𝑖),B𝑖,0,B𝑖,1 : 𝑖 ∈ [𝑛], ind(𝑖) ∈ [ℓ],B𝑖,𝑏 ∈ Sym(𝑤)}

For a bit position 𝑗 ∈ [ℓ], let 𝐼𝑗 be the steps in the branching program that examines 𝑗’th
input bit: 𝐼𝑗 = {𝑖 ∈ [𝑛] : ind(𝑖) = 𝑗}. We obfuscate BP as follows:

∙ Following the original construction of [GGH+13c] we embed the B𝑖,𝜎’s inside higher-
dimension matrices with random elements on the diagonal, but in our case it is sufficient
to have only two such random entries (so the dimension only grows form 𝑤 to 𝑤 + 2).
Denote the higher-dimension matrices by B′𝑖,𝜎.

We also follow the original construction of [GGH+13c] by applying the same transfor-
mation to a “dummy program” DP of the same length that consists of only the identity
matrices, let D′𝑖,𝜎 be the higher-dimension dummy matrices.

∙ We proceed to randomize these branching programs a-la-Kilian “on the plaintext side,”
by choosing randomizing matrices R𝑖’s as per the form of Eqn. (5.4) such that both
R𝑖 and R−1𝑖 are small, and setting B′′𝑖,𝜎 = R𝑖−1B

′
𝑖,𝜎R

−1
𝑖 . The dummy program is

randomized similarly.

∙ We then prepare (𝑤 + 2) × (𝑤 + 2) “bookend matrices” S,S′, and “bookend column
vectors” t, t′. S is random and small except the first row which is zero, t is random
and small except the second entry which is zero, and similarly for S′ and t′, subject
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to S′ · t′ = S · t. Then we set S̃ = SR−10 and t̃ = R𝑛t, and similarly S̃′ = S′R−10 and
t̃′ = R𝑛t

′.

∙ We also sample random small scalars {𝛼𝑖,0, 𝛼𝑖,1, 𝛼
′
𝑖,0, 𝛼

′
𝑖,1 : 𝑖 ∈ [𝑛]}, subject to constraint:∏︀

𝑖∈𝐼𝑗 𝛼𝑖,0 =
∏︀

𝑖∈𝐼𝑗 𝛼
′
𝑖,0 and

∏︀
𝑖∈𝐼𝑗 𝛼𝑖,1 =

∏︀
𝑖∈𝐼𝑗 𝛼

′
𝑖,1. These are used for the “plaintext-

side” multiplicative bundling.

We set B*𝑖,𝜎 = B′′𝑖,𝜎 · 𝛼𝑖,𝜎 for the main program and similarly D*𝑖,𝜎 = D′′𝑖,𝜎 · 𝛼′𝑖,𝜎 for the
dummy program.

∙ Next we use our encoding scheme to encode these matrices relative to a graph with
two chains with a common end-point, each of length 𝑛 + 2. Namely we have A1 →
. . .→ A𝑛+2 and A′1 → . . .→ A′𝑛+1 → A𝑛+2.

For each 𝑖 ∈ [𝑛], we encode the two matrices B*𝑛−𝑖+1,𝑏 relative to the edge A𝑖 → A𝑖+1,
i.e., we have

C𝑇
𝑛−𝑖+1,𝑏 ·A𝑇

𝑖 = A𝑇
𝑖+1 ·B*𝑛−𝑖+1,𝑏 + E𝑖,𝑏

for some small error E𝑖,𝑏. Similarly we encode the dummy program with the two
matrices D*𝑛−𝑖+1,𝑏 encoded relative to the edge A′𝑖 → A′𝑖+1, i.e.,

C′𝑇𝑛−𝑖+1,𝑏 ·A′𝑇𝑖 = A′𝑇𝑖+1 · (D*𝑛−𝑖+1,𝑏)
𝑇 + E′𝑖,𝑏

∙ Encode S̃, S̃′ relative to the edges leading to the common sink, i.e. compute the
encoding matrices C𝑆,C

′
𝑆′ such that

C𝑇
𝑆 ·A𝑇

𝑛+1 = A𝑇
𝑛+2 · S̃ + E𝑆 and C′𝑇𝑆′ ·A′𝑇𝑛+1 = A𝑇

𝑛+2 · S̃′ + E′𝑆′

∙ Compute the encoded bookend vectors, folded into the two sources A1 and A′1, namely
a = A𝑇

1 · t̃ + e𝑡 and a′ = A′𝑇1 · t̃′ + e′𝑡.

∙ We next apply both the multiplicative bundling and the the Kilian-style randomization
also on the encoding side. Namely we sample random full-rank matrices P0, . . . ,P𝑛

and P′0, . . . ,P
′
𝑛, and also random scalars modulo 𝑞 {𝛽𝑖,0, 𝛽𝑖,1, 𝛽′𝑖,0, 𝛽′𝑖,1 : 𝑖 ∈ [𝑛]}, subject

to constraints
∏︀

𝑖∈𝐼𝑗 𝛽𝑖,0 =
∏︀

𝑖∈𝐼𝑗 𝛽
′
𝑖,0 =

∏︀
𝑖∈𝐼𝑗 𝛽𝑖,1 =

∏︀
𝑖∈𝐼𝑗 𝛽

′
𝑖,1 = 1.

We then set Ĉ𝑖,𝜎 = P−1𝑖 ·C𝑖,𝜎 · P𝑖−1 · 𝛽𝑖,𝜎 and Ĉ′𝑖,𝜎 = P′−1𝑖 ·C′𝑖,𝜎 · P′𝑖−1 · 𝛽′𝑖,𝜎, and also
Ĉ𝑆 = P0 ·C𝑆 and Ĉ′𝑆′ = P′0 ·C′𝑆′ and â = P−1𝑛 a and â′ = P′−1𝑛 a′.

∙ The obfuscation consists of all the matrices and vectors above, namely

𝒪(BP) =

(︂{︂
Ĉ𝑆,

{︀
Ĉ𝑖,𝜎 : 𝑖 ∈ [𝑛], 𝜎 ∈ {0, 1}

}︀
, â

}︂
,

{︂
Ĉ′𝑆′ ,

{︀
Ĉ′𝑖,𝜎 : 𝑖 ∈ [𝑛], 𝜎 ∈ {0, 1}

}︀
, â′

}︂)︂
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Evaluation. On input x ∈ {0, 1}ℓ the user choose the appropriate encoding matrices Ĉ𝑖,0

or Ĉ𝑖,1 depending on the relevant input bit (and the same for Ĉ′𝑖,0 or Ĉ′𝑖,1) and then multiply
in order setting

y = Ĉ𝑇
𝑆 · (

𝑛∏︁
𝑖=1

Ĉ𝑇
𝑖,𝑥[ind(𝑖)]) · a = A𝑇

𝑛+2 ·
(︀
S · (

𝑛∏︁
𝑖=1

B′′𝑖,𝑥[ind(𝑖)]) · t
)︀

+ e

and

y′ = Ĉ′
𝑇

𝑆′ · (
𝑛∏︁

𝑖=1

Ĉ′
𝑇

𝑖,𝑥[ind(𝑖)]) · a′ = A𝑇
𝑛+2 ·

(︀
S′ · (

𝑛∏︁
𝑖=1

D′′𝑖,𝑥[ind(𝑖)]) · t′
)︀

+ e′,

The output is 1 if ‖y − y′‖ < 𝑞3/4 and 0 otherwise. Note that indeed if
∏︀𝑛

𝑖=1D𝑖,𝑥[ind(𝑖)] = I
then both y and y′ are roughly equal to A𝑇

𝑛+2 · S · t · (
∏︀𝑛

𝑖=1 𝛼𝑖,𝑥[ind(𝑖)]), as needed.

Security. As before, this is merely a candidate and we do not know how to reduce its
security to any “nice” assumption. However the type of attacks that we know against these
scheme do not seem to apply to this candidate.

5.7 Parameter Selection

We now describe the parameter-generation procedure PrmGen, showing how to choose the
parameters for our scheme. The procedure takes as input the security parameter 𝜆, a DAG
𝐺 with diameter 𝑑, and the class 𝒞 of supported circuits. It outputs 𝑛,𝑚, 𝑞 and the Gaussian
parameters 𝑠, 𝜎. The constraints that these parameters need to satisfy are the following:

∙ It should be possible to efficiently sample from the input/error distribution 𝜒 = 𝐷Z,𝑠,
and the LWE problem with parameters 𝑛,𝑚, 𝑞, 𝜒 should be hard. This means that we
need (say) 𝑠 =

√
𝑛 and 𝑞/𝑠 < 2𝑛/𝜆.

∙ It should possible to generate trapdoor for the A𝑣’s, that enables sampling from SamPre
with parameter 𝜎. By Lemma 2.4.1, this means that we need 𝑚 = Ω(𝑛 log 𝑞) and
𝜎 = Ω(

√
𝑛 log 𝑞).

∙ For any supported circuit, the size of the error E at the output of the circuit must
remain below 𝑞3/4. Namely if the output is an encoding D of the plaintext matrix S
relative to path 𝑢; 𝑣, then we need ‖[D𝑇A𝑇

𝑢 −A𝑇
𝑏 S]𝑞‖ < 𝑞3/4.

Let us now analyze the error size in the system. We assume here that we use truncated
Gaussian distributions, i.e. we condition 𝐷Z,𝑠 on the output being smaller than 𝑏

def
= 𝑠
√
𝜆

(which only affect the distribution negligibly.) We similarly condition SamPre on the output
being shorter than 𝐵 def

= 𝜎
√
𝜆. With our settings, we get 𝑏 ≤ 𝑛 and 𝐵 ≤ 𝑛

√
log 𝑞. Hence the
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sample procedure always outputs (S,C,D) with the plaintext satisfying ‖S‖ < 𝑏 and the
encoding matrices satisfying ‖C‖, ‖D‖ < 𝐵.

To analyze the noise development, recall that when multiplying A ∈ Z𝑢×𝑣 by B ∈ Z𝑣×𝑤

we have ‖AB‖ ≤ ‖A‖·‖B‖·𝑣. This means in particular that multiplying 𝑖 encoding matrices
we get an encoding matrix D ∈ Z𝑚×𝑚

𝑞 with ‖D‖ < 𝐵𝑖𝑚𝑖−1 and similarly multiplying 𝑖
plaintext matrices we get a plaintext matrix S ∈ Z𝑛×𝑛

𝑞 with ‖S‖ < 𝑏𝑖𝑛𝑖−1. Regarding the
error, one can show by induction that the product of 𝑖 encoding matrices has an error
E ∈ Z𝑚×𝑛

𝑞 with

‖E‖ < 𝑏 ·
𝑖−1∑︁
𝑗=0

𝐵𝑗𝑚𝑗𝑏𝑑−1−𝑗𝑛𝑑−1−𝑗 < 𝑏 · 𝑖 ·𝐵𝑖−1𝑚𝑖−1.

Given a class 𝒞 of permitted circuits, we consider the canonical representation of the
polynomials in this class as sums of monomials. Let 𝐷 be a bound on the degree of these
polynomials, 𝑅 be a bound on the size of the coefficients, and 𝑁 be a bound on the number
of monomials. Note that in our setting, the degree-bound 𝐷 cannot be larger than the
diameter of the graph 𝐺 (since 𝐺 is acyclic and hence cannot have directed paths longer
than 𝑑). The size of the error in this case could grow as much as 𝑁 · 𝑅 · 𝑏 ·𝐷 · 𝐵𝐷−1𝑚𝐷−1.
With 𝑏 ≤ 𝑛 and 𝐵 ≤ 𝑛

√
log 𝑞, we thus have the constraint

𝑞3/4 > 𝑁 ·𝑅 · 𝑛 ·𝐷 ·
(︀
𝑛
√︀

log 𝑞
)︀𝐷−1

𝑚𝐷−1

= 𝑁 ·𝑅 · 𝑛𝐷 ·𝑚𝐷−1 ·𝐷 ·
(︀

log 𝑞
)︀(𝐷−1)/2

. (5.5)

Substituting 𝑚 = Θ(𝑛 log 𝑞), and 𝑞 = 2𝑛/𝜆, we can use Eqn. (5.5) to solve for 𝑛 in terms
of 𝜆,𝑁,𝑅 and 𝐷. With 𝐷 ≤ 𝑑 and assuming the (typical) case of 𝑅 = poly(𝜆) and 𝑁 < 𝑑𝑑,
it can be verified that this bound is satisfied using 𝑛 = Θ(𝑑𝜆 log(𝑑𝜆)). This setting yields
𝑞 = 2𝑛/𝜆 = 2Θ(𝑑 log(𝑑𝜆)) = (𝑑𝜆)Θ(𝑑) and 𝑚 = Θ(𝑛 log 𝑞) = Θ(𝑑2𝜆2 log2(𝑑𝜆)).

Note that with this setting, each matrix A𝑣 ∈ Z𝑛×𝑚
𝑞 is of size 𝑚𝑛 log 𝑞 = Θ(𝑑4𝜆2 log4(𝑑𝜆))

bits. The public parameters typically contain just one or a handful of such matrices
(corresponding to the source nodes in 𝐺), but the secret parameters contain all of them.
Hence the secret parameters are of size Θ(|𝑉 | × 𝑑4𝜆2 log4(𝑑𝜆)) = Ω(𝑑5𝜆2 log4(𝑑𝜆)) bits. (We
have |𝑉 | > 𝑑 since the diameter of 𝐺 is 𝑑.) The encoding matrices are of dimension 𝑚×𝑚,
but their entries are small, so they can be represented by roughly𝑚2 log 𝑛 = Θ(𝑑4𝜆2 log5(𝑑𝜆))
bits.

Working over a larger ring. As usual, we can get better parameters by working over
larger rings, and let 𝑛 denote the extension degree of the ring. In this case the matrices A
are 𝑚× 1 column vectors over the larger ring, and we can find trapdoors for these matrices
already for 𝑚 = Θ(log 𝑞), and also the plaintext elements are now scalars (or constant-degree
matrices).

This only affects Eqn. (5.5) or the solution 𝑛 = Θ(𝑑𝜆 log(𝑑𝜆)) by a constant factor,
and hence shaves only a constant factor from the number of bits in 𝑞 = 2Θ(𝑑 log(𝑑𝜆)), but
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now we have 𝑚 = Θ(log 𝑞) = Θ(𝑑 log(𝑑𝜆)). With each scalar in 𝑅𝑞 represented by 𝑛 log 𝑞
bits, it takes 𝑚𝑛 log 𝑞 = Θ(𝑑3𝜆 log3(𝑑𝜆)) bits to represent each matrix A𝑣 ∈ 𝑅1×𝑚

𝑞 , and
Θ(𝑚2 log 𝑛) = Θ(𝑑3𝜆 log4(𝑑𝜆)) bits to represent each encoding matrix with small entries.

5.8 Conclusions and Open Problems
In this chapter, we presented a new multilinear map candidate from standard (random) lat-
tices and showed its applications to key-exchange and general purpose program obfuscation.
It remains an intriguing open problem to understand the security of our construction further,
and, if possible, provide reductions from well-studied lattice problems. Alternatively, it
should be possible to reduce the security of our constructions to new stand-alone assumptions
and understand their hardness. It remains open to construct multilinear map directly from
one of the standard assumptions used in cryptography, such as learning-with-errors.
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Chapter 6

Fully Homomorphic Signatures

Motivated by the prevalence of cloud computing, there has been much interest in cryp-
tographic schemes that allow a user Alice to securely outsource her data to an untrusted
remote server (e.g., the cloud), while also allowing the server to perform useful computations
over this data. The ground-breaking development of fully homomorphic encryption (FHE)
by Gentry [Gen09] allows Alice to maintain the privacy of her data by encrypting it, while
allowing the server to homomorphically perform arbitrary computations over the ciphertexts.
In this chapter, we are interested in the dual question of authenticity.

Homomorphic Signatures. A homomorphic signature scheme allows Alice to sign some
large dataset 𝑥 using her secret signing key. She can then distribute the signed data to
some untrusted entity called a “data processor”. A data processor can perform arbitrary
computations 𝑦 = 𝑓(𝑥) over this data and homomorphically derive a signature 𝜎𝑓,𝑦, which
certifies that 𝑦 is the correct output of the computation 𝑓 over Alice’s data. The derived
signature 𝜎𝑓,𝑦 should be short, with length independent of the size of the data 𝑥. Anybody
can verify the tuple (𝑓, 𝑦, 𝜎𝑓,𝑦) using Alice’s public verification key and become convinced
that 𝑦 is indeed the correct output of the computation 𝑓 over Alice’s signed data 𝑥, without
needing to download the entire data 𝑥. Although the computational effort of verifying a
derived signature is proportional to the complexity of computing the function 𝑓 , this work
can be performed offline prior to seeing the signature, and can be amortized when verifying
the same computation over many datasets.

Application: Computation on Outsourced Data. As the most basic application of
homomorphic signatures, a user Alice can outsource her signed data to a remote server acting
as a data processor, and later verify various computations performed by the server over her
data. Using homomorphic signatures, this can be done with minimal communication and
interaction consisting of a single short signature sent from the server to Alice. Although
verifying the correctness of this computation takes Alice as much time as the computation
itself, she avoids having to store this data long term. We refer the reader to Section 6.1.1
for a detailed comparison with related work on delegating memory and computation.
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Application: Certified Data Analysis. The non-interactive nature of homomorphic
signatures and the fact that they provide public verifiability also makes them useful in a
wide variety of settings beyond the above outsourcing scenario.

For example, consider a scenario where a trusted agency such as the National Institute of
Health (NIH), runs a large-scale medical study. It signs the collected data 𝑥 and distributes it
to various research groups and pharmaceutical companies for analysis. Some of these groups
may have incentives to lie about the outcomes of their analysis and are not trusted by the
public. However, using homomorphic signatures, they can publicly post their methodology
for the analysis (a function 𝑓), the claimed outcome of the analysis (𝑦 = 𝑓(𝑥)), and a short
signature 𝜎𝑓,𝑦 that certifies the correctness of the outcome. This information can be posted
publicly (e.g., on third-party websites) and verified by the public using a verification key
published by the NIH. The public does not need to have access to the underlying data and does
not need to interact with the NIH or the research groups that performed the computation to
verify such signatures – indeed, these entities may go offline and the underlying data may be
deleted after the analysis is performed but the signed results remain verifiable. Furthermore,
such signatures can be made context hiding to ensure that they do not reveal anything about
the underlying medical data beyond the outcome of the analysis. In this case, the NIH trusts
the research groups to preserve the privacy of the underlying data (from the world), but the
world does not trust the research groups to perform the analysis correctly.

6.1 Our Contributions, Techniques and Related Work

In this chapter, we construct the first (leveled) fully homomorphic signature schemes that can
evaluate arbitrary circuits over signed data, where only the maximal depth 𝑑 of the circuit
needs to be fixed a priori. The size of the evaluated signature grows polynomially in 𝑑, but is
otherwise independent of the data size or the circuit size. This is an exponential improvement
in capabilities over the best prior homomorphic signature schemes which could only evaluate
polynomials of some bounded degree 𝑘 where the efficiency degraded polynomially with 𝑘
(in general, 𝑘 = 2𝑂(𝑑)).

Our solutions are based on the (subexponential) hardness of the small integer solution
(SIS) problem in standard lattices, which is in turn implied by the worst-case hardness of
standard lattice problems [Ajt96]. This is also a significant improvement in assumptions over
the best prior schemes which either relied on ideal lattices or multi-linear maps.

We get a scheme in the standard model, where the maximal dataset size needs to be
bounded by some polynomial 𝑁 during setup and the size of the public parameters is linear
in 𝑁 . In the random-oracle model, we get rid of this caveat and get a scheme with short
public parameters and without any a-priori bound on the dataset size. In both cases, the
user can sign arbitrarily many different datasets by associating each dataset with some label
(e.g., a file name). The verifier must know the label of the dataset on which the computation
was supposed to be performed when verifying the output.
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Efficient Online/Amortized Verification. Our schemes allow for fast amortized
verification of a computation 𝑓 over many different datasets, even if the datasets belong
to different users with different verification keys. In particular, the verifier only needs to
perform work proportional to the circuit size of 𝑓 once to verify arbitrarily many signatures
under arbitrary verification keys. This work can be performed offline prior to receiving any
of the signatures, and the online verification can then be much more efficient than computing
𝑓 .

Context Hiding. Our schemes can also be made context hiding so that a signature 𝜎𝑓,𝑦
does not reveal any additional information about the underlying data 𝑥 beyond the output
𝑦 = 𝑓(𝑥). We show how to achieve this statistically without relying on any additional
assumptions.

Composition. Our schemes also allow composition of several different computations over
signed data. One evaluator can compute some functions 𝑦1 = ℎ1(𝑥), . . . , 𝑦ℓ = ℎℓ(𝑥) over
signed data 𝑥 and publish the homomorphically computed signatures 𝜎ℎ1,𝑦1 , . . . , 𝜎ℎℓ,𝑦ℓ . A
second evaluator can then come and perform an additional computation 𝑦* = 𝑔(𝑦1, . . . , 𝑦ℓ)
on the outputs of the previous computation and combine the signatures 𝜎ℎ1,𝑦1 , . . . , 𝜎ℎℓ,𝑦ℓ

into 𝜎𝑔∘ℎ̄,𝑦* which certifies 𝑦* as the output of the composed computation (𝑔 ∘ ℎ̄)(𝑥)
def
=

𝑔(ℎ1(𝑥), . . . , ℎℓ(𝑥)). The second evaluator does not need to know the original data 𝑥 or the
original signatures. This can continue as long as the total computation is of bounded depth.

6.1.1 Related Work

Linearly Homomorphic Schemes. Many prior works consider the question of homomor-
phic message authentication codes (MACs with private verification) and signatures (public
verification) for restricted homomorphisms, and almost exclusively for linear functions :
[ABC+07, SBW08, DVW09, AKK09, AB09, BFKW09, GKKR10, BF11a, AL11, BF11b,
CFW12, Fre12]. Such MACs and signautres have interesting applications to network coding
and proofs of retrievability.

Homomorphic Signatures Beyond Linear. Boneh and Freeman [BF11a] were the first
to consider homomorphic signatures beyond linear functions, and propose a general definition
of such signatures. They present a scheme that can evaluate arbitrary polynomials over
signed data, where the maximal degree 𝑘 of the polynomial is fixed a priori and the size of
the evaluated signature grows (polynomially) in 𝑘. If we want to translate this to the setting
of circuits, then a circuit of depth 𝑑 can be represented by a polynomial of degree as high as
𝑘 = 2𝑑, and therefore the signature size can grow exponentially in the depth of the circuit.
The construction is based on the hardness of the Small Integer Solution (SIS) problem in
ideal lattices and has a proof of security in the random-oracle model. The recent work of
Catalano et al. [CFW14] gives an alternate solution using multi-linear maps which removes
the need for random oracles at the cost of having large public parameters. The main open
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question left by these works is to construct signatures with greater levels of homomorphism,
and ideally a fully homomorphic scheme that can evaluate arbitrary circuits.

Homomorphic MACs Beyond Linear. There has also been progress in constructing
homomorphic message authentication (MACs) with private verification for larger classes
of homomorphisms. The work of Gennaro and Wichs [GW13] defines and achieves fully
homomorphic MACs using fully homomorphic encryption. However, the security of the
scheme only holds in a setting without verification queries and can completely break down if
the attacker has access to a verification oracle allowing him to test whether authentication
tags are valid. More recent works [CF13, BFR13, CFGN14] show how to get homomorphic
MACs that remain secure in the presence of verification queries, but only for restricted
homomorphisms. Currently, the best such schemes allow for the evaluation of polynomials
of degree 𝑘, where the computational effort grows polynomially with 𝑘 (but the size of the
evaluated authentication tag stays fixed). In other words, the question of (leveled) fully
homomorphic authentication, even in the setting of private verification, remained open prior
to this work.

Other Types of Homomorphic Authentication. We also mention works on specific
types of homomorphic properties such as redactable signatures (see e.g., [JMSW02, ABC+12])
where, given a signature on a long message 𝑥, it should be possible to derive a signature on a
subset/substring 𝑥′ of 𝑥. The work of [ABC+12] proposes a general notion of 𝑃 -homomorphic
signature schemes for various predicates 𝑃 , but efficient constructions were only known for
a few specific instances. 1

Homomorphic Signatures via SNARKs. There is a very simple construction of fully
homomorphic signatures by relying on CS-Proofs [Mic94] or, more generally, succinct
non-interactive arguments of knowledge for NP (SNARKs) [BCCT12, BCCT13, BCI+13,
GGPR13, PHGR13, BSCG+13]. This primitive allows us to non-interactively create a short
“argument” 𝜋 for any NP statement so that 𝜋 proves “knowledge” of the corresponding
witness. The length of 𝜋 is bounded by some fixed polynomial in the security parameter and
is independent of the statement/witness size. The complexity of verifying 𝜋 only depends
on the size of the statement (but not the witness). Using SNARKs, we can authenticate the
output 𝑦 = 𝑓(𝑥) of any computation 𝑓 over any signed data 𝑥 (under any standard signature
scheme) by creating a short argument 𝜋𝑓,𝑦 that proves the knowledge of “data 𝑥 along with
valid signature of 𝑥, such that 𝑓(𝑥) = 𝑦”.

1There is a potentially confusing syntactic difference between the notion of 𝑃 -homomorphic signatures
and the notion of homomorphic signatures in this work, although the two are equivalent. In 𝑃 -homomorphic
signatures, given a signature of 𝑥 one should be able to derive a signature of 𝑥′ as long as 𝑃 (𝑥, 𝑥′) = 1
for some predicate 𝑃 (e.g., the substring predicate). The same effect can be achieved using the syntax
of homomorphic signatures in this work by defining a function 𝑓𝑥′ that has 𝑥′ hard-coded and computes
𝑓𝑥′(𝑥) = 𝑃 (𝑥, 𝑥′). We would then give a derived signature 𝜎𝑓𝑥′ ,1 certifying that 𝑦 = 1 is the output of the
computation 𝑓𝑥′(𝑥) over the originally signed data 𝑥.
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One advantage of the SNARK-based scheme is that a signature can be verified very
efficiently, independently of the complexity of the computation 𝑓 being verified, as long as 𝑓
has a short Turing-Machine description. In contrast, in this work, we will only get efficient
verification in an amortized sense, when verifying a computation 𝑓 over many different
datasets. Unfortunately, constructing SNARKs, even without a “knowledge” requirement, is
known to require the use of non-standard assumptions [GW11]. The additional requirement
of (non black-box) knowledge extraction makes SNARKs even more problematic and is
unlikely to be possible in its full generality [BCPR14]. Known SNARK constructions are
either based on the random-oracle heuristic and the use of PCP machinery, or on various
“knowledge of exponent” assumptions and light-weight PCP variants.

Delegating Computation. Several other works consider the related problem of delegating
computation to a remote server while maintaining the ability to efficiently verify the result
[GKR08, GGP10b, CKV10, AIK10, BGV11, CKLR11, PRV12, PST13, KRR13]. In this
scenario, the server needs to convince the user that 𝑓(𝑥) = 𝑦, where the user knows the
function 𝑓 , the input 𝑥 and the output 𝑦, but does not want to do the work of computing
𝑓(𝑥). In contrast, in our scenario the verifier only knows 𝑓 and 𝑦 but does not know the
previously authenticated data 𝑥, which may be huge. As mentioned in [GW13], some of the
results for delegating computation in the pre-processing model can also be re-interpreted as
giving results for the latter scenario. The latter scenario was also explicitly considered by
Chung et al. [CKLR11] in the context of memory delegation, where the client can also update
the data on the server. Some of these solutions only allow a single party with secret key
to verify computation, while others (e.g., [PRV12]) allow anyone to verify. However, all of
the above solutions for memory delegation and delegating computation require at least some
interaction between the client and server (often just a challenge-response protocol) to verify
a computation 𝑓 . Therefore they do not give us a solution to the problem of homomorphic
signatures (or even homomorphic MACs), where we require a static certificate which certifies
the output of a computation and which can be posted publicly and verified by everyone.

6.1.2 Our Techniques

Our constructions of homomorphic signatures are modular and, as a building block of
potentially independent interest, we present a new primitive called a homomorphic trapdoor
function (HTDF). This primitive allows us to conceptually unite homomorphic encryption
and signatures. We now give a high-level overview of our techniques. We start with the
notion of HTDFs, then show how to construct homomorphic signatures from HTDFs, and
finally show how to construct HTDFs from the SIS problem.

Homomorphic Trapdoor Functions (HTDF). An HTDF consists of a function 𝑣 =
𝑓𝑝𝑘,𝑥(𝑢) described via a public key 𝑝𝑘 and an index 𝑥 ∈ {0, 1}, with input 𝑢 and output 𝑣.
It will be useful to think of this as a commitment scheme where 𝑥 is the message, 𝑣 is the
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commitment and 𝑢 is the randomness/decommitment. Given some values

𝑢1, 𝑥1, 𝑣1 = 𝑓𝑝𝑘,𝑥1(𝑢1) , . . . , 𝑢𝑁 , 𝑥𝑁 , 𝑣𝑁 = 𝑓𝑝𝑘,𝑥𝑁
(𝑢𝑁)

and a circuit 𝑔 : {0, 1}𝑁 → {0, 1}, we can homomorphically compute an input
𝑢* := HTDF.Eval𝑖𝑛(𝑔, (𝑥1, 𝑢1) . . . , (𝑥𝑁 , 𝑢𝑁)) and an output 𝑣* := HTDF.Eval𝑜𝑢𝑡(𝑔, 𝑣1, . . . , 𝑣𝑁)
such that:

𝑓𝑝𝑘,𝑔(𝑥1,...,𝑥𝑁 )(𝑢
*) = 𝑣*.

Thinking of HTDFs as commitments, the above says that if the values 𝑣𝑖 are commitments
to the message bits 𝑥𝑖 with decommitments 𝑢𝑖, then we can homomorphically combine the
𝑣𝑖 to derive a commitment 𝑣* and homomorphically combine the messages/decommitments
(𝑥𝑖, 𝑢𝑖) to get a decommitment 𝑢* which opens 𝑣* to the message 𝑔(𝑥1, . . . , 𝑥𝑁).

We want to be able to generate the public key 𝑝𝑘 of the HTDF together with a trapdoor
𝑠𝑘 that allows us to take any output 𝑣 and efficiently invert it with respect to any index 𝑥 to
get 𝑢← Inv𝑠𝑘,𝑥(𝑣) such that 𝑓𝑝𝑘,𝑥(𝑢) = 𝑣. In the language of commitments, this means that
we want the scheme to be equivocable (and therefore statistically hiding) with a trapdoor
𝑠𝑘 that lets us open any commitment to any message.

For security, we simply require that the HTDF is claw-free: given 𝑝𝑘, it should be hard
to come up with inputs 𝑢0, 𝑢1 such that 𝑓𝑝𝑘,0(𝑢0) = 𝑓𝑝𝑘,1(𝑢1). Equivalently, in the language
of commitments, we want the scheme to be computationally binding.

As an intellectual curiosity (but of no application to this work), we could also change our
requirements and instead ask for an HTDF which is extractable (and therefore statistically
binding) while also being computationally hiding. In other words, we would want to generate
𝑝𝑘 along with a trapdoor 𝑠𝑘 that would allow us to extract 𝑥 from 𝑣 = 𝑓𝑝𝑘,𝑥(𝑢). In this case,
such an HTDF could also be though of as a fully homomorphic encryption scheme, where 𝑣 is
the ciphertext of a message 𝑥 and HTDF.Eval𝑜𝑢𝑡 is the homomorphic evaluation procedure on
ciphertexts. Our eventual construction of an HTDF will provide both options by allowing us
to choose 𝑝𝑘 in one of two indistinguishable modes: an equivocable mode and an extractable
mode. In this work, we will solely rely on the equivocable mode to construct homomorphic
signatures. However, the extractable mode of the HTDF (essentially) corresponds to the
Gentry-Sahai-Waters [GSW13] fully homomorphic encryption scheme. Therefore, we view
HTDFs as providing an interesting conceptual unification of homomorphic signatures and
encryption. We refer the reader to Section 6.6 for more on this grand unification.

Basic Homomorphic Signatures from HTDFs. We construct several flavors of
homomorphic signature schemes using HTDFs as a black-box. As the most basic flavor, we
construct a signature scheme in the standard model where the setup procedure knows some
bound 𝑁 on the size of the dataset that will be signed and the size of the public parameters
can depend on 𝑁 . The public parameters prms = (𝑣1, . . . , 𝑣𝑁) consist of 𝑁 random outputs
of the HTDF. Each user chooses a pubic/secret key pair (𝑝𝑘, 𝑠𝑘) for an HTDF, which also
serves as the key pair for the signature scheme. To sign some data 𝑥 = (𝑥1, . . . , 𝑥𝑁) ∈ {0, 1}𝑁
the user simply finds inputs 𝑢𝑖 such that 𝑓𝑝𝑘,𝑥𝑖

(𝑢𝑖) = 𝑣𝑖 by using 𝑠𝑘 to invert 𝑣𝑖. We think
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of 𝑢𝑖 as a signature that ties 𝑥𝑖 to its position 𝑖.
Given 𝑥, the signatures 𝑢1, . . . , 𝑢𝑁 , and a function 𝑔 : {0, 1}𝑁 → {0, 1}, anybody can

homomorphically compute a signature 𝑢*𝑔,𝑦 := HTDF.Eval𝑖𝑛(𝑔, (𝑥1, 𝑢1), . . . , (𝑥𝑁 , 𝑢𝑁)) which
certifies 𝑦 = 𝑔(𝑥1, . . . , 𝑥𝑁) as the output of the computation 𝑔. To verify the tuple (𝑔, 𝑦, 𝑢*𝑔,𝑦),
the verifier will compute 𝑣* := HTDF.Eval𝑜𝑢𝑡(𝑔, 𝑣1, . . . , 𝑣𝑁) and checks 𝑓𝑝𝑘,𝑦(𝑢*𝑔,𝑦)

?
= 𝑣*. Notice

that verification procedure only depends on the public parameters but does not know the
data 𝑥. We can show that this basic scheme already satisfies selective security, where we
assume that dataset 𝑥1, . . . , 𝑥𝑁 is chosen by the attacker before seeing the public parameters.
In the reduction, instead of choosing 𝑣𝑖 randomly, we choose a random input 𝑢𝑖 and compute
𝑣𝑖 := 𝑓𝑝𝑘,𝑥𝑖

(𝑢𝑖) using the data 𝑥𝑖 that the attacker wants signed. This makes it easy for the
reduction to generate signatures for 𝑥𝑖. Furthermore, for any function 𝑔, the reduction can
compute the honest signature 𝑢 = HTDF.Eval𝑖𝑛(𝑔, (𝑥1, 𝑢1), . . . , (𝑥𝑁 , 𝑢𝑁)) which certifies the
output 𝑦 = 𝑔(𝑥1, . . . , 𝑥𝑁). If an attacker produces a forged signature 𝑢′ that certifies 𝑦′ ̸= 𝑦
then 𝑓𝑝𝑘,𝑦(𝑢) = 𝑓𝑝𝑘,𝑦′(𝑢

′) and therefore (𝑢, 𝑢′) breaks the claw-free security of the HTDF.

Upgrading Functionality and Security. We show how to generically start with a
basic homomorphic signature scheme as above and convert into more powerful variants of
homomorphic signatures with improved functionality, efficiency, and security.

Firstly, we note that since the public parameters prms = (𝑣1, . . . , 𝑣𝑁) of our basic scheme
are uniformly random values, we can easily compress them in the random oracle model to
get a scheme with short public parameters. In particular, the public parameters of the new
scheme only consist of a short random string 𝑟 and we can derive the values 𝑣𝑖 = 𝐻(𝑟, 𝑖) using
a random oracle 𝐻. We can also translate this random-oracle scheme into a standard-model
assumption on the hash function 𝐻 which is simple-to-state and falsifiable, but nevertheless
non-standard. This gives us a tradeoff between efficiency and assumptions.

Next, we give a generic transformation from a homomorphic signature scheme with
selective security to a scheme with full adaptive security. Our transformation works in
both the standard model and the random oracle model. Starting from a selectively secure
leveled FHS scheme, we obtain a fully secure leveled FHS scheme.2

Lastly, following Boneh and Freeman [BF11a], we can extend the functionality of
homomorphic signatures to allow the user to sign multiple different datasets under different
labels 𝜏 (e.g., 𝜏 can correspond to a “file name”), where verifier must simply know the label
of the dataset on which the computation was supposed to be performed. We show a generic
transformation from a basic signature that only works for a single dataset into one that
supports multiple datasets. Furthermore, this transformation gives us efficient amortized
verification of a computation over multiple datasets.

Constructing HTDFs. We now briefly describe how to construct HTDFs based on the
SIS problem. We rely on the homomorphic techniques developed by Gentry et al. [GSW13]

2Although Catalano et al. [CFW14] provide a similar transformation, it works only for bounded degree
polynomial functions, and does not generalize to leveled FHS.
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and by Boneh et al. [BGG+14] in the context of fully homomorphic encryption and attribute-
based encryption.

The SIS problem states that, for a random matrix A ∈ Z𝑛×𝑚
𝑞 it should be hard to come

up with a “short” non-zero vector u ∈ Z𝑚
𝑞 , such that A · u = 0. However, there is a way

to generate A along with a trapdoor td that makes this easy and, more generally, for any
matrix V ∈ Z𝑛×𝑚

𝑞 , the trapdoor can be used to sample a “short” matrix U ∈ Z𝑚×𝑚
𝑞 such

that AU = V. There is also a public matrix G ∈ Z𝑛×𝑚
𝑞 with some special structure (not

random) for which everyone can efficiently compute a “short” matrix G−1(V) such that
GG−1(V) = V.3

Our HTDF consists of choosing 𝑝𝑘 = A together with trapdoor 𝑠𝑘 = td as above.
We define 𝑓𝑝𝑘,𝑥(U)

def
= AU + 𝑥 · G, but we restrict the domain to “short” matrices U.

We show that finding a claw consisting of “short” matrices U0,U1 such that 𝑓𝑝𝑘,0(U0) =
𝑓𝑝𝑘,1(U1) ⇒ A(U0 − U1) = G implies breaking the SIS problem. Next, we show how to
perform homomorphic operations on this HTDF.

Homomorphic Operations. Let U1,U2 ∈ Z𝑚×𝑚
𝑞 be “short” matrices and

V1 = 𝑓𝑝𝑘,𝑥1(U1) = AU1 + 𝑥1 ·G , V2 = 𝑓𝑝𝑘,𝑥2(U2) = AU2 + 𝑥2 ·G

Addition. Firstly, it is very easy to perform homomorphic addition (over Z𝑞). We can simply
set: V* = V1 + V2 and U* = U1 + U2. This ensures:

V* = (AU1 + 𝑥1 ·G) + (AU2 + 𝑥2 ·G) = AU* + (𝑥1 + 𝑥2)G = 𝑓𝑝𝑘,𝑥1+𝑥2(U
*).

Multiplication. Homomorphic multiplication (over Z𝑞) consists of setting V* := V2G
−1(V1)

and U* := 𝑥2U1 + U2G
−1(V1). This gives:

V* = V2G
−1(V1) = (AU2 + 𝑥2G)G−1(V1) = AU2G

−1(V1) + 𝑥2(AU1 + 𝑥1G)

= AU* + 𝑥1𝑥2G = 𝑓𝑝𝑘,𝑥1·𝑥2(U
*)

We define the noise level of a matrix U to be the maximal size (in absolute value) of any entry
in the matrix. The noise level grows as we perform homomorphic operations. Intuitively, if
the inputs to the operation have noise-level 𝛽 then homomorphic addition just doubles the
noise level to 2𝛽, while multiplication of “small” values 𝑥1, 𝑥2 ∈ {0, 1} multiplies the noise
level to at most (𝑚+ 1)𝛽. Therefore, when evaluating a boolean circuit of depth 𝑑 the noise
level can grow to as much as 𝛽(𝑚+ 1)𝑑. We pause to note that the noise growth is a crucial
difference between our scheme and that of Boneh and Freeman [BF11a], where multiplication
raises the noise level from 𝛽 to 𝛽2, meaning that evaluating a circuit of depth 𝑑 could raise
the noise level to as high as 𝛽2𝑑 . Since the modulus must satisfy 𝑞 ≫ 𝛽(𝑚+ 1)𝑑 for security,

3 Note that we are abusing notation and G−1 is not a matrix but rather a function - for any V there
are many choices of U such that GU = V, and G−1(V) deterministically outputs a particular short matrix
from this set. For those familiar with [GSW13], multiplication by G corresponds to PowersOf2() and G−1()
corresponds to BitDecomp().
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the level of homomorphism 𝑑 must be fixed ahead of time, during the setup of the scheme.
The overall efficiency degrades polynomially with 𝑑.

6.1.3 Chapter Organization

In Section 6.2 we present the syntax of our new homomorphic trapdoor functions and
instantiate it from lattices. In Section 6.3, we present our construction for single data-
set setting. In Section 6.4, we present a general transformation from single to multiple
data-sets setting. In Section 6.5, we show how to achieve context-hiding property for our
homomorphic signatures scheme. In Section 6.6, we present a connection of homomorphic
trapdoor functions and fully-homomorphic encryption. In Section 6.7 we summarize and
present some open problems.

6.2 Homomorphic Trapdoor Functions
A homomorphic trapdoor function allows us to take values {𝑢𝑖, 𝑥𝑖, 𝑣𝑖 = 𝑓𝑝𝑘,𝑥𝑖

(𝑢𝑖)}𝑖∈[𝑁 ] and
create an input 𝑢* (depending on 𝑢𝑖, 𝑥𝑖) and an output 𝑣* (depending only on 𝑣𝑖) such that
𝑓𝑝𝑘,𝑔(𝑥1,...,𝑥𝑁 )(𝑢

*) = 𝑣*. We now give a formal definition.

6.2.1 Definition

A homomorphic trapdoor function (HTDF) consists of the following five polynomial-time
algorithms (HTDF.KeyGen, 𝑓, Inv, HTDF.Eval𝑖𝑛, HTDF.Eval𝑜𝑢𝑡) with syntax:

∙ (𝑝𝑘, 𝑠𝑘)← HTDF.KeyGen(1𝜆) : a key generation procedure.
The security parameter sec defines the index space 𝒳 , the input space 𝒰 , and the output
space 𝒱 and some efficiently samplable input distribution 𝐷𝒰 over 𝒰 . We require that
membership in the sets 𝒰 ,𝒱 ,𝒳 can be efficiently tested and that one can efficiently
sample uniformly at random from 𝒱 .

∙ 𝑓𝑝𝑘,𝑥 : 𝒰 → 𝒱 : a deterministic function indexed by 𝑥 ∈ 𝒳 and 𝑝𝑘.

∙ Inv𝑠𝑘,𝑥 : 𝒱 → 𝒰 : a probabilistic inverter indexed by 𝑥 ∈ 𝒳 and 𝑠𝑘.

∙ 𝑢* = HTDF.Eval𝑖𝑛(𝑔, (𝑥1, 𝑢1), . . . , (𝑥ℓ, 𝑢ℓ)), 𝑣* = HTDF.Eval𝑜𝑢𝑡(𝑔, 𝑣1, . . . , 𝑣ℓ) are deter-
ministic input/output homomorphic evaluation algorithms. The algorithms take as
input some function 𝑔 : 𝒳 ℓ → 𝒳 and values 𝑥𝑖 ∈ 𝒳 , 𝑢𝑖 ∈ 𝒰 , 𝑣𝑖 ∈ 𝒱 . The outputs are
𝑢* ∈ 𝒰 and 𝑣* ∈ 𝒱 .4

Note that we do not require 𝑓𝑝𝑘,𝑥(·) to be an injective function. Indeed, it will not be in our
construction.

4More precisely, 𝑔 is a function description in some specified format. In our case, this will always be
either a boolean or an arithmetic circuit. For simplicity we often say “function 𝑔” but refer to a specific
representation of the function.
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Correctness of Homomorphic Evaluation. Let (𝑝𝑘, 𝑠𝑘) ∈ HTDF.KeyGen(1𝜆),5 𝑥1, . . . , 𝑥ℓ ∈
𝒳 , 𝑔 : 𝒳 ℓ → 𝒳 and 𝑦 := 𝑔(𝑥1, . . . , 𝑥ℓ). Let 𝑢1, . . . , 𝑢ℓ ∈ 𝒰 and set 𝑣𝑖 := 𝑓𝑝𝑘,𝑥𝑖

(𝑢𝑖) for 𝑖 ∈ [ℓ].
Let 𝑢* := HTDF.Eval𝑖𝑛(𝑔, (𝑥1, 𝑢1), . . . , (𝑥ℓ, 𝑢ℓ)), 𝑣* := HTDF.Eval𝑜𝑢𝑡(𝑔, 𝑣1, . . . , 𝑣ℓ). Then we
require that 𝑢* ∈ 𝒰 and 𝑓𝑝𝑘,𝑦(𝑢*) = 𝑣*.

Relaxation: In a leveled fully homomorphic scheme, each input 𝑢𝑖 ∈ 𝒰 will have some
associated “noise-level” 𝛽𝑖 ∈ R. The initial samples from the input-distribution 𝐷𝒰 have
some “small” noise-level 𝛽𝑖𝑛𝑖𝑡. The noise-level 𝛽* of the homomorphically computed input
𝑢* depends on the noise-levels 𝛽𝑖 of the inputs 𝑢𝑖, the function 𝑔 and the indices 𝑥𝑖. If the
noise level 𝛽* of 𝑢* exceeds some threshold 𝛽* > 𝛽𝑚𝑎𝑥, then the above correctness need
not hold. This will limit the type of functions that can be evaluated. A function 𝑔 is
admissible on the values 𝑥1, . . . , 𝑥ℓ if, whenever the inputs 𝑢𝑖 have noise-levels 𝛽𝑖 ≤ 𝛽𝑖𝑛𝑖𝑡,
then 𝑢* := HTDF.Eval𝑖𝑛(𝑔, (𝑥1, 𝑢1), . . . , (𝑥ℓ, 𝑢ℓ)) will have noise-level 𝛽* ≤ 𝛽𝑚𝑎𝑥.

Distributional Equivalence of Inversion. We require the following statistical indistin-
guishability:

(𝑝𝑘, 𝑠𝑘, 𝑥, 𝑢, 𝑣)
stat
≈ (𝑝𝑘, 𝑠𝑘, 𝑥, 𝑢′, 𝑣′)

where (𝑝𝑘, 𝑠𝑘) ← HTDF.KeyGen(1𝜆), 𝑥 ∈ 𝒳 can be an arbitrary random variable that
depends on (𝑝𝑘, 𝑠𝑘), 𝑢← 𝐷𝒰 , 𝑣 := 𝑓𝑝𝑘,𝑥(𝑢), 𝑣′ ← 𝒱 , 𝑢′ ← Inv𝑠𝑘,𝑥(𝑣′).

HTDF Security. We now define the security of HTDFs. Perhaps the most natural security
requirement would be one-wayness, meaning that for a random 𝑣 ← 𝒱 and any 𝑥 ∈ 𝒳 it
should be hard to find a pre-image 𝑢 ∈ 𝒰 such that 𝑓𝑝𝑘,𝑥(𝑢) = 𝑣. Instead, we will require
a stronger property which is similar to claw-freeness. In particular, it should be difficult to
find 𝑢, 𝑢′ ∈ 𝒰 and 𝑥 ̸= 𝑥′ ∈ 𝒳 such that 𝑓𝑝𝑘,𝑥(𝑢) = 𝑓𝑝𝑘,𝑥′(𝑢′). Formally, we require that for
any PPT attacker 𝒜 we have:

Pr

[︂
𝑓𝑝𝑘,𝑥(𝑢) = 𝑓𝑝𝑘,𝑥′(𝑢′)

𝑢, 𝑢′ ∈ 𝒰 , 𝑥, 𝑥′ ∈ 𝒳 , 𝑥 ̸= 𝑥′

⃒⃒⃒⃒
(𝑝𝑘, 𝑠𝑘)← HTDF.KeyGen(1𝜆)

(𝑢, 𝑢′, 𝑥, 𝑥′)← 𝒜(1𝜆, 𝑝𝑘)

]︂
≤ negl(𝜆).

6.2.2 Construction: Basic Algorithms and Security

We begin by describing the basic HTDF algorithms for key-generation, computing the
function 𝑓𝑝𝑘,𝑥, and inverting it using 𝑠𝑘. We prove the security of the scheme. Then, in
6.2.3 we show how to perform homomorphic operations.

Parameters. Our scheme will be defined by a flexible parameter 𝑑 = 𝑑(𝜆) = poly(𝜆)
which roughly determines the level of homomorphism. We choose parameters:

𝑛 , 𝑚 , 𝑞 , 𝛽𝑆𝐼𝑆 , 𝛽𝑚𝑎𝑥 , 𝛽𝑖𝑛𝑖𝑡

5Recall, we use this as shorthand for “(𝑝𝑘, 𝑠𝑘) in the support of HTDF.KeyGen(1𝜆)”.
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depending on sec and 𝑑. We do so by setting 𝛽𝑚𝑎𝑥 := 2𝜔(log 𝜆)𝑑, 𝛽𝑆𝐼𝑆 := 2𝜔(log 𝜆)𝛽max. Then
choose an integer 𝑛 = poly(𝜆) and a prime 𝑞 = 2poly(𝜆) > 𝛽𝑆𝐼𝑆 as small as possible so that
the SIS(𝑛,𝑚, 𝑞, 𝛽𝑆𝐼𝑆) assumption holds for all 𝑚 = poly(𝜆). Finally, let 𝑚* = 𝑚*(𝑛, 𝑞) :=
𝑂(𝑛 log 𝑞), 𝛽𝑠𝑎𝑚 := 𝑂(𝑛

√
log 𝑞) be the parameters required by the trapdoor algorithms as

in Lemma 2.4.1, and set 𝑚 = max{𝑚*, 𝑛 log 𝑞 + 𝜔(log 𝜆)} = poly(𝜆) and 𝛽𝑖𝑛𝑖𝑡 := 𝛽𝑠𝑎𝑚 =
poly(𝜆). Note that 𝑛,𝑚, log 𝑞 all depend (polynomially) on 𝜆, 𝑑.

Construction of HTDF. Let the algorithms TrapSamp, SamPre, Sam, and the matrix G
be as defined in Lemma 2.4.1.

∙ Define the domains 𝒳 = Z𝑞 and 𝒱 = Z𝑛×𝑚
𝑞 . Let 𝒰 = {U ∈ Z𝑚×𝑚

𝑞 : ||U||∞ ≤ 𝛽𝑚𝑎𝑥}.
We define the distribution U← 𝐷𝒰 to sample U← Sam(1𝑚, 1𝑚, 𝑞) as in Lemma 2.4.1,
so that ||U||∞ ≤ 𝛽𝑖𝑛𝑖𝑡.

∙ (𝑝𝑘, 𝑠𝑘) ← HTDF.KeyGen(1𝜆) : Select (A, td) ← TrapSamp(1𝑛, 1𝑚, 𝑞). Set 𝑝𝑘 := A ∈
Z𝑛×𝑚

𝑞 and 𝑠𝑘 = td.

∙ Define 𝑓𝑝𝑘,𝑥(U)
def
= A ·U+ 𝑥 ·G. Note that, although the function 𝑓 is well-defined on

all of Z𝑚×𝑚
𝑞 , we restrict the legal domain of 𝑓 to the subset 𝒰 ⊆ Z𝑚×𝑚

𝑞 .

∙ Define U← Inv𝑠𝑘,𝑥(V) to output U← SamPre(A,V − 𝑥 ·G, td).

We define the noise-level 𝛽 of a value U ∈ 𝒰 as 𝛽 = ||U||∞. We note that all efficiency
aspects of the scheme (run-time of procedures, sizes of keys/inputs/outputs, etc.) depend
polynomially on sec and on the flexible parameter 𝑑.

Distributional Equivalence of Inversion. Let (𝑝𝑘 = A, 𝑠𝑘 = td)← HTDF.KeyGen(1𝜆),
and let 𝑥 ∈ 𝒳 be an arbitrary random variable that depends on (𝑝𝑘, 𝑠𝑘). Let U ← 𝐷𝒰 ,
V = AU+𝑥 ·G = 𝑓𝑝𝑘,𝑥(U), V′ ← 𝒱 , U′ ← {Inv𝑠𝑘,𝑥(V′) = SamPre(A,V′−𝑥 ·G, td)}. Then
we need to show:

(𝑝𝑘 = A, 𝑠𝑘 = td, 𝑥,U,V = AU + 𝑥G)
stat
≈ (𝑝𝑘 = A, 𝑠𝑘 = td, 𝑥,U′,V′) (6.1)

Lemma 2.4.1, part (2) tells us that:

(A, td,U,AU)
stat
≈ (A, td,U′,V′ + 𝑥 ·G) (6.2)

by noticing that (V′ − 𝑥 ·G) is just uniformly random. Equation 6.1 follows from 6.2 by
applying the same function to both sides: append a sample 𝑥 from the correct correlated
distribution given (A, td) and subtract 𝑥 ·G from the last component.

HTDF Security. We now prove the security of our HTDF construction under the SIS
assumption.
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Theorem 6.2.1. Assuming the SIS(𝑛,𝑚, 𝑞, 𝛽𝑆𝐼𝑆)-assumption holds for the described param-
eter choices, the given scheme satisfies HTDF security.

Proof. Assume that𝒜 is some PPT attacker that wins the HTDF security game for the above
scheme with non-negligible probability. Let us modify the HTDF game so that, instead of
choosing (A, td) ← TrapSamp(1𝑛, 1𝑚, 𝑞) and setting 𝑝𝑘 := A and 𝑠𝑘 = td, we just choose
A← Z𝑛×𝑚

𝑞 uniformly at random. Notice that 𝑠𝑘 = td is never used anywhere in the original
HTDF game. Therefore, this modification is statistically indistinguishable by the security
of TrapSamp (see Lemma 2.4.1, part (2)). In particular, the probability of 𝒜 winning the
modified game remains non-negligible.

We now show that an attacker who wins the modified HTDF game can be used to solve
the SIS problem. The reduction uses the challenge matrix A of the SIS problem as the public
key 𝑝𝑘 = A and runs the attacker 𝒜. Assume the attacker 𝒜 wins the modified HTDF game
with the values U,U′ ∈ 𝒰 and 𝑥 ̸= 𝑥′ ∈ 𝒳 such that 𝑓𝑝𝑘,𝑥(U) = 𝑓𝑝𝑘,𝑥′(U′). Let U* := U′−U
and 𝑥* = (𝑥− 𝑥′). Then:

𝑓𝑝𝑘,𝑥(U) = AU + 𝑥G = AU′ + 𝑥′G = 𝑓𝑝𝑘,𝑥′(U′) ⇒ AU* = 𝑥*G (6.3)

Moreover, since U,U′ ∈ 𝒰 , we have ||U||∞, ||U′||∞ ≤ 𝛽𝑚𝑎𝑥 and therefore ||U*||∞ ≤ 2𝛽𝑚𝑎𝑥.
Moreover, since 𝑥 ̸= 𝑥′, we have 𝑥* ̸= 0.

We now show that knowledge of a “small” U* and some 𝑥* ̸= 0 satisfying the right hand
side of equation 6.3 can be used to find a solution to the SIS problem. Sample r← {0, 1}𝑚,
set z := Ar and compute r′ = G−1(z/𝑥*) so that r′ ∈ {0, 1}𝑚 and 𝑥*Gr′ = z. Then

A(U*r′ − r) = (AU*)r′ −Ar = 𝑥*Gr′ −Ar = z− z = 0.

Therefore, letting u := U*r′ − r, we have Au = 0 and ||u||∞ ≤ (2𝑚 + 1)𝛽𝑚𝑎𝑥 ≤ 𝛽𝑆𝐼𝑆. It
remains to show that u ̸= 0, or equivalently, that r ̸= U*r′. We use an entropy argument
to show that this holds with overwhelming probability over the random choice of r, even if
we fix some worst-case choice of A,U*, 𝑥*. Notice that r ← {0, 1}𝑚 is chosen uniformly at
random, but r′ depends on z = Ar. Nevertheless z is too small to reveal much information
about r and therefore cannot be used to predict r. In particular

H∞(r | r′) ≥ H∞(r | Ar) ≥ 𝑚− 𝑛 log 𝑞 = 𝜔(log 𝜆)

where the first inequality follows since r′ is chosen deterministically based on z = Ar, and the
second inequality follows from Lemma 2.2.1. Therefore, Pr[r = U* ·r′] ≤ 2𝑚−𝑛 log 𝑞 ≤ negl(𝜆).
So, with overwhelming probability, whenever𝒜 wins the modified HTDF game, the reduction
finds a valid solution to the SIS(𝑛,𝑚, 𝑞, 𝛽𝑆𝐼𝑆)-problem. This concludes the proof.

6.2.3 Construction: Homomorphic Evaluation and Noise Growth

We now define the algorithms HTDF.Eval𝑖𝑛, HTDF.Eval𝑜𝑢𝑡 with the syntax

U* := HTDF.Eval𝑖𝑛(𝑔, (𝑥1,U1), . . . , (𝑥ℓ,Uℓ)) , V* := HTDF.Eval𝑜𝑢𝑡(𝑔,V1, . . . ,Vℓ).
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Our approach closely follows the techniques of [GSW13, BGG+14]. As a basic building
block, we consider homomorphic evaluation for certain base functions 𝑔 which we think of
as basic gates in an arithmetic circuit: addition, multiplication, addition-with-constant and
multiplication-by-constant. These functions are complete and can be composed to evaluate
an arbitrary aithmetic circuit. Let the matrices U𝑖 have noise-levels bounded by 𝛽𝑖.

∙ Let 𝑔(𝑥1, 𝑥2) = 𝑥1+𝑥2 be an addition gate. The algorithms HTDF.Eval𝑖𝑛,HTDF.Eval𝑜𝑢𝑡

respectively compute:

U* := U1 + U2 , V* := V1 + V2.

The matrix U* has noise level 𝛽* ≤ 𝛽1+𝛽2. We remark that, in this case, the algorithm
HTDF.Eval𝑖𝑛 ignores the values 𝑥1, 𝑥2.

∙ Let 𝑔(𝑥1, 𝑥2) = 𝑥1 · 𝑥2 be a multiplication gate. Let R = G−1(V1) so that R ∈
{0, 1}𝑚×𝑚 and GR = −V1. The algorithms HTDF.Eval𝑖𝑛,HTDF.Eval𝑜𝑢𝑡 respectively
compute:

U* := 𝑥2 ·U1 + U2G
−1(V1) , V* := V2 ·G−1(V1).

The matrix U* has noise level 𝛽* ≤ |𝑥2|𝛽1 + 𝑚𝛽2. Note that the noise growth is
asymmetric and the order of 𝑥1, 𝑥2 matters. To keep the noise level low, we require
that |𝑥2| is small.

∙ Let 𝑔(𝑥) = 𝑥 + 𝑎 be addition-with-constant gate, for the constant 𝑎 ∈ Z𝑞. The
algorithms HTDF.Eval𝑖𝑛,HTDF.Eval𝑜𝑢𝑡 respectively compute:

U* := U1 , V* := V1 + 𝑎 ·G.

It’s easy to see that the noise-level 𝛽* = 𝛽1 stays the same.

∙ Let 𝑔(𝑥) = 𝑎 · 𝑥 be a multiplication-by-constant gate for the constant 𝑎 ∈ Z𝑞. We give
two alternative methods that homomorphically compute 𝑔 with different noise growth.
In the first method, the algorithms HTDF.Eval𝑖𝑛,HTDF.Eval𝑜𝑢𝑡 respectively compute:

U* := 𝑎 ·U1 , V* := 𝑎 ·V1.

The noise level is 𝛽* = |𝑎|𝛽1, and therefore this method requires that 𝑎 is small. In the
second method, the algorithms HTDF.Eval𝑖𝑛,HTDF.Eval𝑜𝑢𝑡 respectively compute:

U* := U ·G−1(𝑎 ·G) , V* := V ·G−1(𝑎 ·G).

The noise level is 𝛽* ≤ 𝑚 · 𝛽1, and is therefore independent of the size of 𝑎.

It is a simple exercise to check that, whenever the inputs U𝑖,V𝑖 satisfy V𝑖 = 𝑓𝑝𝑘,𝑥𝑖
(U𝑖)

then the above homomorphic evaluation procedures ensure that 𝑓𝑝𝑘,𝑔(𝑥1,...,𝑥ℓ)(U
*) = V*. The

above gate operations can be composed to compute any function 𝑔 expressed as an arithmetic
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circuit. Therefore, the only limitation is the growth of the noise-level. In particular, if the
noise-level of U* is 𝛽* ≥ 𝛽𝑚𝑎𝑥 then U* ̸∈ 𝒰 is not a valid input.

Noise Growth and Bounded-Depth Circuits. The noise growth of the above homo-
morphic operations is fairly complex to describe in its full generality since it depends on the
(size of) the inputs 𝑥𝑖, the order in which operations are performed etc. However, we can
give bounds on the noise growth for the case of boolean circuits composed of NAND gates,
and certain restricted arithmetic circuits.

Let 𝑔 be a boolean circuit of depth 𝑑 composed of NAND gates over inputs 𝑥𝑖 ∈ {0, 1}. For
𝑥1, 𝑥2 ∈ {0, 1} we can define an arithmetic-gate NAND(𝑥1, 𝑥2)

def
= 1 − 𝑥1 · 𝑥2. If 𝑈1, 𝑈2 have

noise-levels ≤ 𝛽, then U* := HTDF.Eval𝑖𝑛(NAND, (𝑥1,U1), (𝑥2,U2)) will have a noise-level
𝛽* ≤ (𝑚 + 1)𝛽. Therefore if we compute U* := HTDF.Eval𝑖𝑛(𝑔, (𝑥1,U1), . . . , (𝑥ℓ,Uℓ)) and
the inputs U𝑖 have noise-levels 𝛽𝑖𝑛𝑖𝑡, then the noise-level of U* will be 𝛽* ≤ 𝛽𝑖𝑛𝑖𝑡 · (𝑚+ 1)𝑑 ≤
2𝑂(log 𝜆)·𝑑 ≤ 𝛽𝑚𝑎𝑥. This show that, with the parameters we chose, any depth-𝑑 boolean circuit
𝑔 is admissible over any choice of boolean indices 𝑥𝑖 ∈ {0, 1}.

More generally, let 𝑔 be an arithmetic circuit of depth 𝑑 consisting of fan-in-𝑡 addition
gates, fan-in-2 multiplication gates, addition-with-constant, and multiplication-by-constant
gates. Moreover, assume that for each fan-in-2 multiplication gate we are guaranteed that
at least one input 𝑥𝑏 is of size |𝑥𝑏| ≤ 𝑝, where 𝑝 = poly(𝜆), 𝑡 = poly(𝜆) are some fixed
polynomials in the security parameter. Evaluating each such gate increases the noise level
by a multiplicative factor of at most max{𝑡, (𝑝 + 𝑚)} = poly(𝜆). Therefore, if inputs U𝑖 to
𝑔 have noise-levels 𝛽𝑖𝑛𝑖𝑡, then the noise-level of U* := HTDF.Eval𝑖𝑛(𝑔, (𝑥1,U1), . . . , (𝑥ℓ,Uℓ))
is bounded by 𝛽𝑖𝑛𝑖𝑡 · max{𝑡, (𝑝 + 𝑚)}𝑑 ≤ 2𝑂(log 𝜆)·𝑑 ≤ 𝛽𝑚𝑎𝑥. This shows that any such
computation is admissible.

We mention that both of the above analyses are overly restrictive/pessimistic and we
may be able to compute some function with lower noise growth than suggested above.

6.3 Fully Homomorphic Signatures (Single Dataset)
Roadmap. We now show how to construct fully homomorphic signatures from HTDFs as
a black box. We do so in several stages.

We begin by defining and constructing homomorphic signatures that can only be used
to sign a single dataset. We also initially only consider selective security, where the data
to be signed is chosen by an attacker prior to seeing the public parameters of the scheme.
In Section 6.3.2 we show how to construct such schemes in the standard model, albeit with
large public parameters whose size exceeds the maximal size of the dataset to be signed. The
public parameters are just uniformly random and therefore, in the random oracle model, we
can easily compress them to get a scheme with short public parameters. We also show that
the latter scheme can be proven secure in the standard model under a simple-to-state and
falsifiable (but non-standard) assumptions on hash functions.

In Section 6.3.4 we then show a generic transformation that combines a homomorphic
signature scheme with selective security and an HTDF to get a homomorphic signature
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scheme with full security. Finally, in 6.4 we define multi-data signatures where the signer
can sign many different datasets under different labels. We give a generic transformation from
single-data homomorphic signatures to multi-data ones. Both of these transformations work
in the standard model and preserve the efficiency of the underlying scheme. (In Section 6.4.3,
we also give an alternate transformation which yields a simpler construction of a multi-data
scheme with full security in the RO model.) Lastly, in 6.5 we show how to make the signature
schemes context hiding.

6.3.1 Definition

A single-data homomorphic signature scheme consists of poly-time algorithms (PrmsGen,KeyGen, Sign,
Verify, Process,Eval) with the following syntax.

∙ prms ← PrmsGen(1𝜆, 1𝑁): Gets the security parameter sec and a data-size bound 𝑁 .
Generates public parameters prms. The security parameter also defines the message
space 𝒳 .

∙ (𝑝𝑘, 𝑠𝑘) ← KeyGen(1𝜆, prms): Gets the security parameter sec. Generates a
verification/secret keys 𝑝𝑘, 𝑠𝑘.

∙ (𝜎1, . . . , 𝜎𝑁)← Sign𝑠𝑘(𝑥1, . . . , 𝑥𝑁): Signs some data (𝑥1, . . . , 𝑥𝑁) ∈ 𝒳𝑁 .

∙ 𝜎* ← Evalprms(𝑔, ((𝑥1, 𝜎1), . . . , (𝑥ℓ, 𝜎ℓ))): Homomorphically computes a signature 𝜎*.

∙ 𝛼𝑔 ← Processprms(𝑔): Homomorphically computes a “public-key” 𝛼𝑔 for the function 𝑔
from the public parameters.

∙ Verify𝑝𝑘(𝛼𝑔, 𝑦, 𝜎): Verifies that 𝑦 is indeed the output of 𝑔 by checking the signature
𝜎 against 𝛼𝑔. We use these algorithms to implicitly define the “combined verification
procedure”:
Verify*𝑝𝑘(𝑔, 𝑦, 𝜎) : { Compute 𝛼𝑔 ← Processprms(𝑔) and output Verify𝑝𝑘(𝛼𝑔, 𝑦, 𝜎)}.

We can think of Process,Verify as a component of the combined verification procedure
Verify*, but it will be useful to define them separately. In particular, we will think of the
Process algorithm as “pre-processing” a function 𝑔. The computational complexity of this
step can depend on the circuit size of 𝑔 but it can be performed offline prior to seeing the
signature 𝜎 or even the verification key 𝑝𝑘. The public-key 𝛼𝑔 for the function 𝑔 can be
small and the “online verification” procedure Verify𝑝𝑘(𝛼𝑔, 𝑦, 𝜎) can be fast, with size/time
independent of 𝑔.

Signing Correctness. Let id𝑖 : 𝒳𝑁 → 𝒳 be a canonical description of the
function id𝑖(𝑥1, . . . , 𝑥𝑁)

def
= 𝑥𝑖 (i.e., a circuit consisting of a single wire taking the 𝑖’th

input to the output.) We require that any prms ∈ PrmsGen(1𝜆, 1𝑁), any (𝑝𝑘, 𝑠𝑘) ∈
KeyGen(1𝜆, prms), any (𝑥1, . . . , 𝑥𝑁) ∈ 𝒳𝑁 and any (𝜎1, . . . , 𝜎𝑁) ∈ Sign𝑠𝑘(𝑥1, . . . , 𝑥𝑁) must
satisfy Verify*𝑝𝑘(id𝑖, 𝑥𝑖, 𝜎𝑖) = accept. In other words, 𝜎𝑖 certifies 𝑥𝑖 as the 𝑖’th data item.
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Evaluation Correctness. We require that for any prms ∈ PrmsGen(1𝜆, 1𝑁), any (𝑝𝑘, 𝑠𝑘) ∈
KeyGen(1𝜆, prms), any (𝑥1, . . . , 𝑥𝑁) ∈ 𝒳𝑁 and any (𝜎1, . . . , 𝜎𝑁) ∈ Sign𝑠𝑘(𝑥1, . . . , 𝑥𝑁) and any
𝑔 : 𝒳𝑁 → 𝒳 , we have:

Verify*𝑝𝑘(𝑔, 𝑔(𝑥1, . . . , 𝑥𝑁), 𝜎*) = accept. (6.4)

where 𝜎* ← Evalprms(𝑔, ((𝑥1, 𝜎1), . . . , (𝑥𝑁 , 𝜎𝑁)). Moreover, we require correctness for
composed evaluation of several different functions. For any ℎ1, . . . , ℎℓ with ℎ𝑖 : 𝒳𝑁 → 𝒳
and any 𝑔 : 𝒳 ℓ → 𝒳 define the composition (𝑔 ∘ ℎ̄) : 𝒳𝑁 → 𝒳 by (𝑔 ∘ ℎ̄)(𝑥̄) =
𝑔(ℎ1(𝑥̄), . . . , ℎℓ(𝑥̄)). We require that for any (𝑥1, . . . , 𝑥ℓ) ∈ 𝒳 ℓ and any (𝜎1, . . . , 𝜎ℓ):

{ Verify*𝑝𝑘(ℎ𝑖, 𝑥𝑖, 𝜎𝑖) = accept }𝑖∈[ℓ]
𝜎* := Evalprms(𝑔, (𝑥1, 𝜎1), . . . , (𝑥ℓ, 𝜎ℓ))

⇒ Verify*𝑝𝑘((𝑔 ∘ ℎ̄), 𝑔(𝑥1, . . . , 𝑥ℓ), 𝜎
*) = accept.

(6.5)
In other words, if the signatures 𝜎𝑖 certify 𝑥𝑖 as the output of ℎ𝑖, then 𝜎* certifies 𝑔(𝑥1, . . . , 𝑥ℓ)
as the output of 𝑔 ∘ ℎ̄. Notice that 6.4 follows from 6.5 and the correctness of signing by
setting ℎ𝑖

def
= id𝑖.

Relaxing Correctness for Leveled Schemes. In a leveled fully homomorphic scheme,
each signature 𝜎𝑖 will have some associated “noise-level” 𝛽𝑖. The initial signatures produced
by (𝜎1, . . . , 𝜎𝑁)← Sign𝑠𝑘(𝑥1, . . . , 𝑥𝑁) will have a “small” noise-level 𝛽𝑖𝑛𝑖𝑡. The noise-level 𝛽*
of the homomorphically computed signature 𝜎* := Evalprms(𝑔, ((𝑥1, 𝜎1), . . . , (𝑥ℓ, 𝜎ℓ))) depends
on the noise-levels 𝛽𝑖 of the signatures 𝜎𝑖, the function 𝑔 and the messages 𝑥𝑖. If the noise
level 𝛽* of 𝜎* exceeds some threshold 𝛽* > 𝛽𝑚𝑎𝑥, then the above correctness requirements
need not hold. This will limit the type of functions that can be evaluated. A function 𝑔 is
admissible on the values 𝑥1, . . . , 𝑥ℓ if, whenever the signatures 𝜎𝑖 have noise-levels 𝛽𝑖 ≤ 𝛽𝑖𝑛𝑖𝑡,
then 𝜎* will have noise-level 𝛽* ≤ 𝛽𝑚𝑎𝑥.

Security Game. We define the security of homomorphic signatures via the following game
between an attacker 𝒜 and a challenger:
∙ The challenger samples prms← PrmsGen(1𝜆, 1𝑁) and (𝑝𝑘, 𝑠𝑘)← KeyGen(1𝜆, prms) and

gives prms, 𝑝𝑘 to the adversary.

∙ The attacker 𝒜(1𝜆) chooses data (𝑥1, . . . , 𝑥𝑁) ∈ 𝒳 * and sends it to the challenger.

∙ The challenger computes (𝜎1, . . . , 𝜎𝑁) ← Sign𝑠𝑘(𝑥1, . . . , 𝑥𝑁) and gives the signatures
(𝜎1, . . . , 𝜎𝑁) to 𝒜.

∙ The attacker 𝒜 chooses a function 𝑔 : 𝒳𝑁 → 𝒳 and values 𝑦′, 𝜎′. Let 𝑦 :=
𝑔(𝑥1, . . . , 𝑥𝑁). The attacker wins if all of the following hold: (1) 𝑔 is admissible on
the values 𝑥1, . . . , 𝑥𝑁 , (2) 𝑦′ ̸= 𝑦, and (3) Verify*𝑝𝑘(𝑔, 𝑦′, 𝜎′) = accept.

We say a homomorphic signature scheme is fully secure if for all PPT 𝒜, we have
Pr[𝒜 wins ] ≤ negl(𝜆) in the above game.
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Remarks. We point out some extensions and relaxations of the definition that we also
consider in this work.

∙ Selective Security. We will also consider a selective security game for single-data
homomorphic signatures, where the attacker chooses the data 𝑥1, . . . , 𝑥𝑁 to be signed
before seeing prms and 𝑝𝑘. This is a natural security notion for the typical use-case
where the user samples prms, 𝑝𝑘, 𝑠𝑘 and signs the data in one step and therefore the
data will not depend on prms, 𝑝𝑘. We first show our basic construction satisfying
selective security. We then show a generic transformation from a selectively secure
scheme to a scheme satisfying full security.

∙ Adaptive Individual Data Item Queries. It is possible to extend the syntax of
homomorphic signature schemes to also allow the user to sign different data items 𝑥𝑖
individually with respect to their position 𝑖, rather than having to specify the entire
dataset vector (𝑥1, . . . , 𝑥𝑁) all at at once. It is easy to see that our construction
in Section 6.3.2 allows this. In this case, we can also extend our definition of full
adaptive security to allow an adversary to query for signatures of individual data
items 𝑥𝑖 adaptively, after seeing the signatures of other items. It is easy to see that our
transformation from selective to fully adaptive security in Section 6.3.4 achieves this
notion of security (with minimal syntactic changes to the proof). A similar extension
can also be added to the setting of multiple-data sets as defined in 6.4. In this case,
the user would be able to sign an individual data-item 𝑥𝑖 with respect to position 𝑖 of
a dataset with label 𝜏 . Again it is easy to see that our construction in 6.4 allows for
this and achieves full adaptive security in this setting.

∙ Verification and Admissible Functions. We note that, under the above definition,
security only holds when verifying a function 𝑔 which is admissible on the signed values
𝑥1, . . . , 𝑥𝑁 , but the verifier does not know these values. Therefore, we require some
convention on the types of values 𝑥𝑖 that the signer will sign and the type of functions
𝑔 that the verifier is willing to verify to ensure that the function is admissible on the
signed values. For example, our eventual construction ensures that if 𝑔 is a boolean
circuit of depth ≤ 𝑑 then it is admissible on all boolean inputs with 𝑥𝑖 ∈ {0, 1} ⊆ 𝒳 .
Therefore, by convention, we can restrict the signer to only sign values 𝑥𝑖 ∈ {0, 1} and
the verifier to only verify functions 𝑔 that are boolean circuits of depth ≤ 𝑑. Other
combinations (e.g., 𝑥𝑖 ∈ Z𝑞 and 𝑔 is an affine function) are also possible and therefore
we leave this decision to the users of the scheme rather than its specification.

6.3.2 Basic Construction

Let ℱ = (HTDF.KeyGen, 𝑓, Inv, HTDF.Eval𝑖𝑛, HTDF.Eval𝑜𝑢𝑡) be an HTDF with index-space
𝒳 , input space 𝒰 , output space 𝒱 and an input distribution 𝐷𝒰 . We construct a signature
scheme 𝒮 = (PrmsGen,KeyGen,Sign,Verify,Process,Eval) with message space 𝒳 as follows.

∙ prms ← PrmsGen(1𝜆, 1𝑁) : Choose 𝑣1, . . . , 𝑣𝑁 by sampling 𝑣𝑖 ← 𝒱 . Output prms =
(𝑣1, . . . , 𝑣𝑁).
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∙ (𝑝𝑘, 𝑠𝑘) ← KeyGen(1𝜆, prms) : Choose (𝑝𝑘′, 𝑠𝑘′) ← HTDF.KeyGen(1𝜆) and set 𝑝𝑘 =
𝑝𝑘′, 𝑠𝑘 = (prms, 𝑠𝑘′).

∙ (𝜎1, . . . , 𝜎𝑁) ← Sign𝑠𝑘(𝑥1, . . . , 𝑥𝑁): Sample 𝑢𝑖 ← Inv𝑠𝑘′,𝑥𝑖
(𝑣𝑖) and set 𝜎𝑖 := 𝑢𝑖 for

𝑖 ∈ [𝑁 ].

∙ 𝜎* = Eval𝑝𝑘(𝑔, (𝑥1, 𝜎1), . . . , (𝑥ℓ, 𝜎ℓ)) : Run HTDF.Eval𝑖𝑛𝑝𝑘′ procedure of the HTDF.

∙ 𝛼𝑔 ← Processprms(𝑔): Compute 𝛼𝑔 := HTDF.Eval𝑜𝑢𝑡𝑝𝑘′ (𝑔, 𝑣1, . . . , 𝑣𝑁).

∙ Verify𝑝𝑘(𝛼𝑔, 𝑦, 𝜎) : If 𝑓𝑝𝑘′,𝑦(𝜎) = 𝛼𝑔 accept, else reject.

Remarks. (I) We can think of prms = (𝑣1, . . . , 𝑣𝑁) as public parameters that can be fixed
for all users of the scheme. Each user’s individual public/secret key then only consists of
the small values 𝑝𝑘′, 𝑠𝑘′. (II) Although we describe the signing procedure as signing the
values 𝑥1, . . . , 𝑥𝑁 in one shot, it’s easy to see that we can also sign the values 𝑥𝑖 completely
independently (e.g., at different times) without needing to keep any state beyond knowing
the index 𝑖 by setting 𝜎𝑖 ← Inv𝑠𝑘′,𝑥𝑖

(𝑣𝑖). (III) We note that if the function 𝑔 only “touches” a
small subset of the inputs 𝑖 ∈ [𝑁 ] then the pre-processing step Processprms(𝑔) only needs to
read the corresponding values 𝑣𝑖 from the public parameters. The run-time of this step can
therefore be sub-linear in 𝑁 and only depends on the size of the circuit 𝑔 (ignoring unused
input wires). (IV) The efficiency of the scheme is inherited from that of the HTDF. Note
that, although the pre-processing step Processprms(𝑔) requires running HTDF.Eval, the online
verification step can be much more efficient. For our HTDF construction, it will only depend
on the size of 𝜎, 𝛼𝑔 which only scale with the depth but not the size of the circuit 𝑔.

Correctness and Security. It’s easy to see that correctness of signing and correctness
of (leveled) homomorphic evaluation for the signature scheme 𝒮 follow from the correctness
properties of the underlying (leveled) HTDF ℱ . In a leveled scheme, the noise-level of
signatures 𝜎𝑖 = 𝑢𝑖 is just defined as its noise-level of the HTDF input 𝑢𝑖. The initial noise-
level 𝛽𝑖𝑛𝑖𝑡, the maximal noise level 𝛽𝑚𝑎𝑥, and the set of admissible functions is the same in
𝒮 and in ℱ . We are left to prove security.

Theorem 6.3.1. Assuming ℱ satisfies HTDF security, the signature scheme 𝒮 satisfies
single-data security of homomorphic signatures.

Proof. Assume that an adversary𝒜 has a non-negligible advantage in the single-data security
game with the scheme 𝒮. In the game, the attacker 𝒜 selects some data 𝑥1, . . . , 𝑥𝑁 ∈ 𝒳 and
gets back prms = (𝑣1, . . . , 𝑣𝑁), 𝑝𝑘′ and 𝜎1, . . . , 𝜎𝑁 , where (𝑝𝑘′, 𝑠𝑘′) ← HTDF.KeyGen(1𝜆),
𝑣𝑖 ← 𝒱 and 𝜎𝑖 = 𝑢𝑖 ← Inv𝑠𝑘′,𝑥𝑖

(𝑣𝑖). Let us modify the game by choosing 𝑢𝑖 ← 𝐷𝒰 and
setting 𝑣𝑖 := 𝑓𝑝𝑘′,𝑥𝑖

(𝑢𝑖). This change is statistically indistinguishable by the “Distributional
Equivalence of Inversion” property of the HTDF.6 Therefore 𝒜 wins the modified games with

6Technically, this requires 𝑁 hybrid arguments where we switch how each 𝑢𝑖, 𝑣𝑖 is sampled one-by-one.
In each hybrid, we rely on the fact that indistinguishability holds even given 𝑠𝑘′ to sample the rest of the
values 𝑢𝑗 , 𝑣𝑗 .
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non-negligible probability.
We now give a polynomial-time reduction that takes any attacker 𝒜 having a non-

negligible advantage in the above modified game, and use it to break HTDF security of
ℱ with the same advantage. The reduction gets a challenge public key 𝑝𝑘′ and chooses
the values 𝑢𝑖, 𝑣𝑖 as in the modified game (without knowing 𝑠𝑘′) and gives these values to
𝒜. Assume the attacker 𝒜 wins the modified game by choosing some admissible function
𝑔 : 𝒳𝑁 → 𝒳 on 𝑥1, . . . , 𝑥𝑁 and some values 𝑦′, 𝜎′ = 𝑢′. Let 𝑦 := 𝑔(𝑥1, . . . , 𝑥𝑁),
𝛼𝑔 := HTDF.Eval𝑜𝑢𝑡𝑝𝑘′ (𝑔, 𝑣1, . . . , 𝑣𝑁), 𝑢 := HTDF.Eval𝑖𝑛𝑝𝑘′(𝑔, (𝑥1, 𝜎1), . . . , (𝑥𝑁 , 𝜎𝑁)). Then, since
the signature 𝜎′ verifies, we have 𝑓𝑝𝑘′,𝑦′(𝑢′) = 𝛼𝑔. On the other hand, since 𝑔 is an admissible
function, the correctness of homomorphic evaluation ensures that 𝑓𝑝𝑘′,𝑦(𝑢) = 𝛼𝑔. Therefore,
the values 𝑢, 𝑢′ ∈ 𝒰 and 𝑦 ̸= 𝑦′ ∈ 𝒳 satisfy 𝑓𝑝𝑘′,𝑦(𝑢) = 𝑓𝑝𝑘′,𝑦′(𝑢

′), allowing the reduction to
break HTDF security whenever 𝒜 wins the modified game.

6.3.3 A Scheme with Short Public Parameters

We can adapt the above construction to get a scheme with short public parameters in
the random oracle model. Instead of choosing prms = (𝑣1, . . . , 𝑣𝑁), with 𝑣𝑖 ← 𝒱 taken
uniformly at random from the output space of the HTDF, we can set prms = 𝑟 for some
small 𝑟 ← {0, 1}𝜆 and implicitly define 𝑣𝑖 = 𝐻(𝑟, 𝑖) where 𝐻 : {0, 1}* → 𝒱 is a hash
function modeled as a random oracle. The rest of the algorithms remain unchanged. It
is easy to see that the same security proof as above goes through for this scheme in the
random-oracle mode.

Moreover, we can define a standard-model assumption on the hash function 𝐻 under
which we can prove the above scheme secure. The assumption is falsifiable and simple-to-
state, but it is not a standard assumption. It ties together the security of the hash function
𝐻 with that of the underlying HTDF ℱ .

Definition 6.3.1. Let ℱ = (HTDF.KeyGen, 𝑓, Inv, HTDF.Eval𝑖𝑛, HTDF.Eval𝑜𝑢𝑡) be an HTDF
with index-space 𝒳 , input space 𝒰 , output space 𝒱 and an input distribution 𝐷𝒰 . Let
𝐻 : {0, 1}* → 𝒱 be a hash function. We say that 𝐻 is inversion unhelpful for ℱ if
for any PPT adversary 𝒜 the probability of 𝒜(1𝜆) winning the following game is negligible
in 𝜆:

∙ Adversary 𝒜 chooses values 𝑥1, . . . , 𝑥𝑁 with 𝑥𝑖 ∈ 𝒳 .

∙ Challenger chooses (𝑝𝑘, 𝑠𝑘) ← HTDF.KeyGen(1𝜆), 𝑟 ← {0, 1}𝜆. For 𝑖 = 1, . . . , 𝑁 , it
computes 𝑣𝑖 = 𝐻(𝑟, 𝑖), 𝑢𝑖 ← Inv𝑠𝑘,𝑥𝑖

(𝑣𝑖). It gives (𝑝𝑘, 𝑟, 𝑢1, . . . , 𝑢𝑁) to 𝒜.

∙ Adversary 𝒜 outputs 𝑢, 𝑢′ ∈ 𝒰 and 𝑥 ̸= 𝑥′ ∈ 𝒳 and wins if 𝑓𝑝𝑘,𝑥(𝑢) = 𝑓𝑝𝑘,𝑥′(𝑢′).

Essentially, the above says that 𝐻 is inversion unhelpful for ℱ is seeing the inverses
𝑢𝑖 ← Inv𝑠𝑘,𝑥𝑖

(𝐻(𝑟, 𝑖)) for 𝑥𝑖 chosen adversarially but non-adaptively and 𝑟 random, does not
help the attacker in coming up with a claw for ℱ .

It is easy to see that the random-oracle construction outlined above is secure as long as
the function 𝐻 is inversion unhelpful for ℱ . The proof follows the proof of security of our
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basic construction in Section 6.3.2, with the only difference that the reduction sets the values
𝑣𝑖 = 𝐻(𝑟, 𝑖) and the signatures 𝜎𝑖 = 𝑢𝑖 by getting 𝑟 and {𝑢𝑖} them from the challenger in
the above inversion-unhelpful security game.

It is also easy to see that if 𝐻 is modeled as random oracle, then it is inversion-unhelpful
for any HTDF ℱ . This is because we can “program” the outputs 𝐻(𝑟, 𝑖) to values 𝑣𝑖 =
𝑓𝑝𝑘,𝑥𝑖

(𝑢𝑖) for 𝑢𝑖 ← 𝐷𝒰 and then invert 𝑣𝑖 to 𝑢𝑖 without knowing the secret key 𝑠𝑘 of the
HTDF. Therefore, seeing such inverses 𝑢𝑖 cannot help the adversary in finding a claw.

We note that the above inversion-unhelpful assumption is simpler to state than simply
assuming the resulting signature scheme is secure. In particular, the assumption does not
depend on any homomorphic properties, the adversary does not get to choose a function of
his choice, the challenger does not have to perform any homomorphic evaluations etc. Also,
having such an assumption sets some contrast between the above homomorphic signature
scheme with short parameters in the Random-Oracle model and a generic construction of
homomorphic signatures based on SNARKs in the Random-Oracle model (see introduction).
For the latter, we either need to rely on SNARK security, which is not a falsifiable assumption,
or we could instead simply assume that the full signature scheme construction in the random-
oracle model is secure but, since the construction of SNARKs is complex and involves heavy
PCP machinery, this assumptions would be far from simple-to-state.

6.3.4 From Selective Security to Full Security

We now show how to construct a fully secure homomorphic signature scheme from any
selectively secure scheme and an HTDF. On a high level, the transformation is similar to the
use of chameleon hashing to go from security against selective chosen-message queries (e.g.,
the signing queries are all made ahead of time) to adaptive chosen-message security [KR00].
However, to make this work with homomorphic signatures, we would need the chameleon
hash to also be homomorphic. Fortunately, HTDFs can be thought of as providing exactly
such primitive.

In more detail, to sign some data 𝑥1, . . . , 𝑥𝑁 under the new signature scheme, we first
choose random values 𝑣1, . . . , 𝑣𝑁 from the output of the HTDF, then we sign the values
𝑣𝑖 under the selectively secure scheme to get signatures 𝜎𝑖 and finally we compute 𝑢𝑖 ←
Inv𝑠𝑘,𝑥𝑖

(𝑣𝑖) and give out the signature 𝜎𝑖 = (𝑣𝑖, 𝑢𝑖, 𝜎𝑖). To homomorphically evaluate some
function 𝑔 over such signatures we (1) run the input/output homomorphic computation the
HTDF to compute values 𝑢*, 𝑣* so that 𝑢* is an “opening” of 𝑣* to the message 𝑔(𝑥1, . . . , 𝑥𝑁)
and (2) we run the homomorphic evaluation of the signature scheme to compute a signature
𝜎* which certifies that 𝑣* was computed correctly.

Security comes from the fact that values 𝑣𝑖 signed under the selectively secure signature
scheme are chosen uniformly at random and therefore non-adaptively. By the selective
security of the underlying signature, this shows that an attacker cannot give the “wrong”
𝑣* in his forgery. On the other hand, by the claw-free security of the HTDF, the attacker
also cannot open the “right” 𝑣* to the “wrong” message as this would produce a claw on the
HTDF.
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Construction. Let ℱ = (HTDF.KeyGen, 𝑓, Inv, HTDF.Eval𝑖𝑛, HTDF.Eval𝑜𝑢𝑡) be an HTDF
with index-space 𝒳 , input space 𝒰 , output space 𝒱 and an input distribution 𝐷𝒰 . Let
𝒮 ′ = (PrmsGen′,KeyGen′, Sign′,Verify′,Process′,Eval′) be a selectively secure homomorphic
signature scheme. Without loss of generality and for simplicity of exposition, we will assume
that the message space of 𝒮 ′ is the same as the output space 𝒱 of the HTDF (we can always
represent the values 𝑣 ∈ 𝒱 as bits and sign them bit-by-bit if this is not the case). For a
function 𝑔 : 𝒳 ℓ → 𝒳 we define a corresponding function 𝑔′ : 𝒱ℓ → 𝒱 as 𝑔′(𝑣1, . . . , 𝑣ℓ) =
HTDF.Eval𝑜𝑢𝑡(𝑔, 𝑣1, . . . , 𝑣ℓ).

∙ prms ← PrmsGen(1𝜆, 1𝑁) : Use the selectively secure signature scheme prms ←
PrmsGen′(1𝜆, 1𝑁).

∙ (𝑝𝑘, 𝑠𝑘)← KeyGen(1𝜆, prms) : Choose

(𝑝𝑘ℎ, 𝑠𝑘ℎ)← HTDF.KeyGen(1𝜆) , (𝑝𝑘′, 𝑠𝑘′)← KeyGen′(1𝜆, prms).

Set 𝑝𝑘 = (𝑝𝑘ℎ, 𝑝𝑘
′), 𝑠𝑘 = (𝑠𝑘ℎ, 𝑠𝑘

′).

∙ (𝜎1, . . . , 𝜎𝑁)← Sign𝑠𝑘′(𝑥1, . . . , 𝑥𝑁):

– For each 𝑖 ∈ [𝑁 ]: sample 𝑣𝑖 ← 𝒱 , 𝑢𝑖 ← Inv𝑠𝑘ℎ,𝑥𝑖
(𝑣𝑖).

– Compute (𝜎̄1, . . . , 𝜎̄𝑁)← Sign′𝑠𝑘′(𝑣1, . . . , 𝑣𝑁).

– Set 𝜎𝑖 = (𝑣𝑖, 𝑢𝑖, 𝜎𝑖).

∙ 𝜎* = Eval𝑝𝑘(𝑔, (𝑥1, 𝜎1), . . . , (𝑥ℓ, 𝜎ℓ)) : Parse 𝜎𝑖 = (𝑣𝑖, 𝑢𝑖, 𝜎𝑖).

– Compute 𝑣* := HTDF.Eval𝑜𝑢𝑡𝑝𝑘ℎ
(𝑔, 𝑣1, . . . , 𝑣ℓ), 𝑢* := HTDF.Eval𝑖𝑛𝑝𝑘ℎ(𝑔, (𝑥1, 𝑢1), . . . , (𝑥ℓ, 𝑢ℓ)).

– Compute 𝜎* = Eval′𝑝𝑘′(𝑔
′, (𝑣1, 𝜎1), . . . , (𝑣ℓ, 𝜎ℓ)).

– Output 𝜎* = (𝑣*, 𝑢*, 𝜎*),

∙ 𝛼𝑔 ← Processprms(𝑔): Compute 𝛼𝑔 := Process′prms(𝑔
′).

∙ Verify𝑝𝑘(𝛼𝑔, 𝑦, 𝜎
*) : Parse 𝜎* = (𝑣*, 𝑢*, 𝜎*). Verify that 𝑓𝑝𝑘ℎ,𝑦(𝑢

*) = 𝑣* and
Verify′𝑝𝑘′(𝛼𝑔, 𝑣

*, 𝜎*) = accept: if both conditions hold then accept, else reject.

Correctness. The correctness of the signature scheme follows readily from the correctness
of 𝒮 ′ and ℱ . A function 𝑔 is admissible on values 𝑥1, . . . , 𝑥𝑁 under the scheme 𝒮 if it is
admissible under the HTDF ℱ and if the corresponding function 𝑔′ is also admissible over
all values (𝑣1, . . . , 𝑣𝑛) ∈ 𝒱𝑁 under the selectively-secure signature scheme 𝒮 ′.

Theorem 6.3.2. If ℱ is a secure (leveled) HTDF and 𝒮 ′ is a selectively secure (leveled)
homomorphic signature scheme, then the above construction of 𝒮 is a fully secure (leveled)
homomorphic signature scheme.
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Proof. Let 𝒜 be some adversary in the adaptive signature security game against the scheme
𝒮. Let (𝑔, 𝑦′, 𝜎′) denote the adversary’s forgery at the end of the game, and parse 𝜎′ =
(𝑣′, 𝑢′, 𝜎′). Let 𝑥1, . . . , 𝑥𝑁 denote the messages chosen by the adversary in the game and
𝑣1, . . . , 𝑣𝑁 be the values contained in the signatures that it gets back. Let 𝐸1 be the event
that 𝒜 wins the game and 𝑣′ = HTDF.Eval𝑜𝑢𝑡𝑝𝑘ℎ

(𝑔, 𝑣1, . . . , 𝑣𝑁). Let 𝐸2 be the even that 𝒜
wins the game 𝑣′ ̸= HTDF.Eval𝑜𝑢𝑡𝑝𝑘ℎ

(𝑔, 𝑣1, . . . , 𝑣𝑁). The probability that 𝒜 wins the game is
Pr[𝐸1 ∨ 𝐸2] ≤ Pr[𝐸1] + Pr[𝐸1].

Firstly, we show that Pr[𝐸1] is negligible. We do this via a reduction breaking HTDF
security of ℱ with probability Pr[𝐸1]. The reduction gets an HTDF public key 𝑝𝑘ℎ. It
chooses (prms, 𝑝𝑘′, 𝑠𝑘′) for the selectively-secure signature scheme on its own and simulates
the signature game for 𝒜 with one modification: to answer the signing query, instead of
choose 𝑣𝑖 ← 𝒱 , 𝑢𝑖 ← Inv𝑠𝑘ℎ,𝑥𝑖

(𝑣𝑖) it chooses 𝑢𝑖 ← 𝐷𝒰 and 𝑣𝑖 = 𝑓𝑝𝑘ℎ,𝑥𝑖
(𝑢𝑖). This change is

statistically indistinguishable by the “Distributional Equivalence of Inversion” property of the
HTDF. Finally, assume that 𝒜 outputs a forgery causing 𝐸1 to occur. Let 𝑦 = 𝑔(𝑥1, . . . , 𝑥𝑁)
and let 𝑢 = HTDF.Eval𝑖𝑛𝑝𝑘ℎ((𝑥1, 𝑢1), . . . , (𝑥𝑁 , 𝑢𝑁)). Then 𝑦 ̸= 𝑦′ and 𝑓𝑝𝑘,𝑦(𝑢) = 𝑓𝑝𝑘,𝑦′(𝑢

′).
Therefore the tuple (𝑢, 𝑢′, 𝑦, 𝑦′) allows the reduction to break HTDF security.

Secondly, we show that Pr[𝐸2] is negligible. We do this via reduction breaking the
selective security of 𝒮 ′ with Pr[𝐸2]. The reduction starts by (non-adaptively) choosing
random messages 𝑣1, . . . , 𝑣𝑁 with 𝑣𝑖 ← 𝒱 and giving them to its challenger. It gets back
prms, 𝑝𝑘′ and 𝜎1, . . . , 𝜎𝑁 . The reduction chooses its own keys (𝑝𝑘ℎ, 𝑠𝑘ℎ) for the HTDF and
gives (prms, (𝑝𝑘ℎ, 𝑝𝑘

′)) to 𝒜. The adversary 𝒜 replies with messages (𝑥1, . . . , 𝑥𝑁) and the
reduction computes 𝑢𝑖 ← Inv𝑠𝑘ℎ,𝑥𝑖

(𝑣𝑖) and gives back the values 𝜎𝑖 = (𝑣𝑖, 𝑢𝑖, 𝜎𝑖) to 𝒜. Finally,
assume that 𝒜 outputs a forgery causing 𝐸1 to occur. Then (𝑔′, 𝑣′, 𝜎′) is a forgery against
𝒮 ′ since 𝑣′ ̸= 𝑔′(𝑣1, . . . , 𝑣𝑁).

Combining the above, this shows that the probability that 𝒜 wins the adaptive signature
security game against 𝒮 is negligible, and the theorem follows.

6.4 Multi-Data Homomorphic Signatures

We now define and construct multi-data homomorphic signatures. In such a scheme, the
signer can sign many different datasets of arbitrary size. Each dataset is tied to some labels
𝜏𝑖 (e.g., the name of the dataset) and the verifier is assumed to know the label of the dataset
over which he wishes to verify computation. In 6.4.2, we show how to construct multi-
data homomorphic signatures starting from a single dataset scheme. In Section 6.4.3, we
show another transformation which enjoys efficiency improvements and supports signing of
unbounded datasets starting from single dataset scheme with short public parameters (such
as our construction in the random oracle model 6.3.3).
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6.4.1 Definition

A multi-data homomorphic signature consists of the algorithms (PrmsGen,KeyGen, Sign,Verify,Process,
Eval) with the following syntax.

∙ prms ← PrmsGen(1𝜆, 1𝑁): Gets the security parameter sec and a data-size bound 𝑁 .
Generates public parameters prms.

∙ (𝑝𝑘, 𝑠𝑘)← KeyGen(1𝜆, prms): produces a public verification key 𝑝𝑘 and a secret signing
key 𝑠𝑘.

∙ (𝜎𝜏 , 𝜎1, . . . , 𝜎𝑁) ← Sign𝑠𝑘((𝑥1, . . . , 𝑥𝑁), 𝜏): Signs some data 𝑥̄ ∈ 𝒳 * under a label
𝜏 ∈ {0, 1}*.

∙ 𝜎* = Evalprms(𝑔, 𝜎𝜏 , (𝑥1, 𝜎1), . . . , (𝑥ℓ, 𝜎ℓ)): Homomorphically computes the signature 𝜎*.

∙ 𝛼𝑔 ← Processprms(𝑔): Produces a “public-key” 𝛼𝑔 for the function 𝑔.

∙ Verify𝑝𝑘(𝛼𝑔, 𝑦, 𝜏, (𝜎𝜏 , 𝜎
*)): Verifies that 𝑦 ∈ 𝒳 is indeed the output of the function 𝑔

over the data signed with label 𝜏 . We define the “combined verification procedure”:
Verify*𝑝𝑘(𝑔, 𝑦, 𝜏, 𝜎𝜏 , 𝜎

*) : { Compute 𝛼𝑔 ← Processprms(𝑔) and output Verify𝑝𝑘(𝛼𝑔, 𝑦, 𝜏, (𝜎𝜏 , 𝜎
*))}.

Correctness. The correctness requirements are analogous to those of the single-data
definition. We right away define correctness of evaluation to allow for composed evaluation.

Correctness of Signing. We require that any prms ∈ PrmsGen(1𝜆, 1𝑁), (𝑝𝑘, 𝑠𝑘) ∈
KeyGen(1𝜆, prms), any (𝑥1, . . . , 𝑥𝑁) ∈ 𝒳𝑁 , any 𝜏 ∈ {0, 1}* and any (𝜎𝜏 , 𝜎1, . . . , 𝜎𝑁) ∈
Sign𝑠𝑘(𝑥1, . . . , 𝑥𝑁 , 𝜏) must satisfy Verify*𝑝𝑘(id𝑖, 𝑥𝑖, 𝜏, (𝜎𝜏 , 𝜎𝑖)) = accept. In other words, (𝜎𝜏 , 𝜎𝑖)
certifies 𝑥𝑖 as the 𝑖’th data item of the data with label 𝜏 .

Correctness of Evaluation. For any circuits ℎ1, . . . , ℎℓ with ℎ𝑖 : 𝒳𝑁 → 𝒳 and any circuit
𝑔 : 𝒳 ℓ → 𝒳 , any (𝑥1, . . . , 𝑥ℓ) ∈ 𝒳 ℓ, any 𝜏 ∈ {0, 1}* and any 𝜎𝜏 , (𝜎1, . . . , 𝜎ℓ):{︂
{Verify𝑝𝑘(ℎ𝑖, 𝑥𝑖, 𝜏, (𝜎𝜏 , 𝜎𝑖)) = accept}𝑖∈[ℓ]
𝜎* := Eval𝑝𝑘(𝑔, 𝜎𝜏 , (𝑥1, 𝜎1), . . . , (𝑥ℓ, 𝜎ℓ))

}︂
⇒ Verify*𝑝𝑘((𝑔∘ℎ̄), 𝑔(𝑥1, . . . , 𝑥ℓ), 𝜏, (𝜎𝜏 , 𝜎

*)) = accept.

In other words, if the signatures (𝜎𝜏 , 𝜎𝑖) certify 𝑥𝑖 as the outputs of functions ℎ𝑖 over the
data labeled with 𝜏 , then (𝜎𝜏 , 𝜎

*) certifies 𝑔(𝑥1, . . . , 𝑥ℓ) as the output of 𝑔 ∘ ℎ̄ over the data
labeled with 𝜏 .

Multi-Data Security. We define the security via the following game between an attacker
𝒜 and a challenger:

∙ The challenger samples prms ← PrmsGen(1𝜆, 1𝑁), (𝑝𝑘, 𝑠𝑘) ← KeyGen(1𝜆, prms) and
gives prms, 𝑝𝑘 to the attacker 𝒜
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∙ Signing Queries: The attacker 𝒜 can ask an arbitrary number of signing queries. In
each query 𝑗, the attacker chooses a fresh tag 𝜏𝑗 ∈ {0, 1}* which was never queried
previously and a message (𝑥𝑗,1, . . . , 𝑥𝑗,𝑁𝑗

) ∈ 𝒳 *. The challenger responds with

(𝜎𝜏𝑗 , 𝜎𝑗,1, . . . , 𝜎𝑗,𝑁𝑗
)← Sign𝑠𝑘((𝑥𝑗,1, . . . , 𝑥𝑗,𝑁𝑗

), 𝜏𝑗).

∙ The attacker 𝒜 chooses a circuit 𝑔 : 𝒳𝑁 ′ → 𝒳 values 𝜏, 𝑦′, (𝜎′𝜏 , 𝜎′). The attacker wins
if Verify*𝑝𝑘(𝑔, 𝜏, 𝑦′, (𝜎′𝜏 , 𝜎

′)) = accept and either:

– Type I forgery: 𝜏 ̸= 𝜏𝑗 for any 𝑗, or 𝜏 = 𝜏𝑗 for some 𝑗 but 𝑁 ′ ̸= 𝑁𝑗.
(i.e., No signing query with label 𝜏 was ever made or there is a mismatch between
the size of the data signed under label 𝜏 and the arity of the function 𝑔.)

– Type II forgery: 𝜏 = 𝜏𝑗 for some 𝑗 with corresponding message 𝑥𝑗,1, . . . , 𝑥𝑗,𝑁 ′ such
that (a) 𝑔 is admissible on 𝑥𝑗,1, . . . , 𝑥𝑗,𝑁 ′ , and (b) 𝑦′ ̸= 𝑔(𝑥𝑗,1, . . . , 𝑥𝑗,𝑁 ′).

We require that for all PPT 𝒜, we have Pr[𝒜 wins ] ≤ negl(𝜆) in the above game.

6.4.2 From Single-Data to Multi-Data, Construction 1

We now describe our transformation from a single-data homomorphic signature scheme to
a multi-data scheme. We sample the public parameters of the single-data homomorphic
signature scheme once and for all, then for each signing query we sample a pair of
public/secret keys of the homomorphic scheme (using the same public parameters). The
dataset information along with the public key are signed using the regular homomorphic
signature scheme. The dataset itself is signed using the sampled secret key. To verify
the authenticity, it is sufficient to verify the dataset information with the public key, and
authenticate the output of the function with respect to this public key.

Let 𝒮 ′ = (PrmsGen′,KeyGen′, Sign′,Verify′,Process′,Eval′) be a fully secure one-dataset
homomorphic signature scheme. Let 𝒮𝑛ℎ = (NH.KeyGen,NH.Sign,NH.Verify) be any
standard (not homomorphic) signature scheme. We construct a multi-data homomorphic
signature scheme 𝒮 = (PrmsGen,KeyGen, Sign,Verify,Process,Eval) with message space 𝒳 as
follows.

∙ prms ← PrmsGen(1𝜆, 1𝑁) : Sample and output parameters of the single-data
homomorphic signature scheme: prms← PrmsGen(1𝜆, 1𝑁).

∙ (𝑝𝑘, 𝑠𝑘) ← KeyGen(1𝜆) : Choose (𝑝𝑘1, 𝑠𝑘1) ← NH.KeyGen(1𝜆, prms). Samp set 𝑝𝑘 =
𝑝𝑘1, 𝑠𝑘 = (𝑠𝑘1, prms).

∙ (𝜎𝜏 , 𝜎1, . . . , 𝜎𝑁)← Sign𝑠𝑘((𝑥1, . . . , 𝑥𝑁), 𝜏):

– Sample secret and public keys of the single-data homomorphic signature scheme:
(𝑝𝑘2, 𝑠𝑘2)← KeyGen(1𝜆, prms).
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– Sign the dataset size, the tag and the public key of the single-data homomorphic
signature scheme using non-homomorphic scheme: 𝜌 ← NH.Sign𝑠𝑘1((𝑝𝑘2, 𝜏, 𝑁)).
Set 𝜎𝜏 = (𝑝𝑘2, 𝜏, 𝑁, 𝜌).

– Sign the dataset using the single-data homomorphic scheme: (𝜎1, . . . , 𝜎𝑁) ←
Sign′𝑠𝑘2(𝑥1, . . . , 𝑥𝑁).

– Output (𝜎𝜏 , 𝜎1, . . . , 𝜎𝑁).

∙ 𝜎* = Eval𝑝𝑘(𝑔, 𝜎𝜏 , 𝜎(𝑥1, 𝜎1), . . . , (𝑥ℓ, 𝜎ℓ)) : Parse 𝜎𝜏 = (𝑝𝑘2, 𝜏, 𝑁, 𝜌). Apply the single-
data evaluation algorithm. 𝜎* = Evalprms(𝑔, (𝑥1, 𝜎1), . . . , (𝑥𝑁 , 𝜎𝑁)).

∙ 𝛼𝑔 ← Processprms(𝑔) : Output 𝛼𝑔 ← Process′prms(𝑔).

∙ Verify𝑝𝑘(𝛼𝑔, 𝑦, 𝜏, (𝜎𝜏 , 𝜎
*)) : Parse 𝜎𝜏 = (prms, 𝑝𝑘2, 𝜏, 𝑁, 𝜌) and accept if and only if the

following two conditions are satisfied:

1. Verify the parameters of the single-data homomorphic scheme’s public key and
the dataset:
NH.Verify𝑝𝑘1((𝑝𝑘2, 𝜏, 𝑁), 𝜌) = accept, and

2. Verify the homomorphically computed signature: Verify′𝑝𝑘2(𝛼𝑔, 𝑦, 𝜎
*) = accept.

Correctness. Correctness of the scheme follows from the correctness of the regular
signature scheme and single-data homomorphic scheme.

Security. The security follows from two main observations: first, no adversary is able
to fake the parameters or the public key of the single-data homomorphic signature due to
security of the standard signature scheme. Given that, no adversary is able to fake the result
of the the computation due to the security of the single-data homomorphic signature scheme.
In particular, we first switch to Game 1, where the adversary looses if it is able to make
a forgery on some of the dataset information signed under the regular scheme: (𝑝𝑘2, 𝜏, 𝑁).
Now, if there is an adversary able to win Game 1, then we can convert it to an adversary
that breaks the security of the homomorphic scheme. The adversary takes (prms, 𝑝𝑘2) as a
part of the challenge. Guesses an index 𝑗* and sets 𝑝𝑘2,𝑗* = 𝑝𝑘2. It then asks the challenger
to sign the data (𝑥1, . . . , 𝑥𝑁) at query 𝑗* and signs all other datasets by itself by sampling
a pair of public/secret keys. A forgery of type II can then be used to break the security of
single-data homomorphic scheme.

Theorem 6.4.1. Assume 𝒮 ′ is a fully secure single-data homomorphic signature scheme
and 𝒮𝑛ℎ is a regular signature scheme. Then, 𝒮 is a fully secure many-dataset homomorphic
signature scheme.

Proof. We prove the security via a series of indistinguishable games.

∙ Let Game 0 be the multi-data security game.
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∙ Let Game 1 be the modified version of Game 1, except the attacker loses the game
if it outputs a non-homomorphic forgery. That is, a forgery of the form (𝑔, 𝑦, 𝜏, (𝜎𝜏 =
(𝑝𝑘2, 𝜏, 𝑁

′, 𝜌), 𝜎*), where:

1. 𝜏 ̸= 𝜏𝑗 for any 𝑗, or

2. 𝜏 = 𝜏𝑗 for some 𝑗 but 𝑁 ′ ̸= 𝑁𝑗 or

3. 𝜏 = 𝜏𝑗 for some 𝑗, 𝑁 ′ = 𝑁𝑗, but 𝑝𝑘2 ̸= 𝑝𝑘2,𝑗, where 𝑝𝑘2,𝑗 is the public key used
for single-data signature scheme.

That is, if the parameters of the dataset are invalid, the adversary losses the game.
Note that this is the superset of type I forgeries. Clearly, if there exists a winning
adversary in Game 1, then we can break the security of the regular signature scheme,
since we obtain a valid signature 𝜌 of (𝑝𝑘2, 𝜏, 𝑁) which was never signed before.

Now, assume there exists an adversary 𝒜 that wins in Game 1. Then, it must be
able to come up with a type II forgery. Hence, we can construct an adversary 𝒜′ that
breaks the security of the single-data homomorphic signature scheme. 𝒜′ receives parameters
prms, 𝑝𝑘2 as the challenge, it then generates parameters of the regular signature scheme
(𝑝𝑘1, 𝑠𝑘1) ← NH.KeyGen(1𝜆) and forwards prms, 𝑝𝑘 = 𝑝𝑘1 to 𝒜. It also chooses an index 𝑗*
of the dataset on which it guesses the type II will be made and sets 𝑝𝑘2,𝑗* = 𝑝𝑘2. When
𝒜 asks to sign a dataset 𝑗 = 𝑗* with items (𝑥1, . . . , 𝑥𝑁), 𝒜′ forwards it to the challenger
to obtain the signatures (𝜎1, . . . , 𝜎𝑁). It signs (𝑝𝑘2,𝑗* , 𝜏, 𝑁) to obtain 𝜎𝜏 using 𝑠𝑘1 and
forwards (𝜎𝜏 , 𝜎1, . . . , 𝜎𝑁) to 𝒜. All other datasets 𝑗 ̸= 𝑗* it signs honestly by generating
the public/secret keys of the single-data homomorphic signature scheme. Finally, suppose 𝒜
outputs (𝑔, 𝜏, 𝑦, (𝜎𝜏 = (𝑝𝑘2, 𝜏, 𝑁

′, 𝜌), 𝜎*) of type II forgery. Then, assuming 𝒜′ guessed the
dataset correctly, we know that 𝜏 = 𝜏𝑗* , 𝑁 = 𝑁𝑗* and 𝑝𝑘2 = 𝑝𝑘2,𝑗* , Verify*𝑝𝑘2(𝑔, 𝑦, 𝜎

*) = accept
but 𝑔 ̸= 𝑔(𝑥1, . . . , 𝑥𝑁). Hence, 𝒜′ can output (𝑔, 𝑦, 𝜎*) to break the security of single-data
homomorphic signature scheme. This shows that if the regular signature scheme is secure
and the single-data homomorphic signature scheme is secure, then 𝒮 is also secure.

6.4.3 From Single-Data to Multi-Data, Construction 2

We describe another generic transformation from single-data homomorphic signature scheme
with short public parameters prms (independent on the data size; realized by our construction
in 6.3.3) to multi-data scheme. We point out that for this transformation it is sufficient to
start with a selectively secure single data scheme leading efficiency improvements. However,
the resulting construction does not work well for verifiable outsourcing since the verification
algorithm runs in time proportional to the run-time of the function.

Let 𝒮 ′ = (PrmsGen′,KeyGen′, Sign′,Verify′,Process′,Eval′) be a selectively secure homo-
morphic signature scheme. Let 𝒮𝑛ℎ = (NH.KeyGen,NH.Sign,NH.Verify) be any standard (not
homomorphic) signature scheme. We construct a multi-data homomorphic signature scheme

150



𝒮 = (KeyGen, Sign,Verify,Eval) with message space 𝒳 as follows.7

∙ (𝑝𝑘, 𝑠𝑘)← KeyGen(1𝜆) : Choose (𝑝𝑘1, 𝑠𝑘1)← NH.KeyGen(1𝜆) set 𝑝𝑘 = 𝑝𝑘1, 𝑠𝑘 = 𝑠𝑘1.

∙ (𝜎𝜏 , 𝜎1, . . . , 𝜎𝑁)← Sign𝑠𝑘((𝑥1, . . . , 𝑥𝑁), 𝜏):

– Sample parameters and keys of the single-data homomorphic signature scheme:
prms← PrmsGen(1𝜆, 1𝑁), (𝑝𝑘2, 𝑠𝑘2)← KeyGen(1𝜆, prms).

– Sign the dataset size, the tag and the public parameters of the single-data homo-
morphic signature scheme using non-homomorphic scheme: 𝜌← NH.Sign𝑠𝑘1((prms, 𝑝𝑘2, 𝜏, 𝑁)).
Set 𝜎𝜏 = (prms, 𝑝𝑘2, 𝜏, 𝑁, 𝜌).

– Sign the dataset using the single-data homomorphic scheme: (𝜎1, . . . , 𝜎𝑁) ←
Sign′𝑠𝑘2(𝑥1, . . . , 𝑥𝑁).

– Output (𝜎𝜏 , 𝜎1, . . . , 𝜎𝑁).

∙ 𝜎* = Eval𝑝𝑘(𝑔, 𝜎𝜏 , 𝜎(𝑥1, 𝜎1), . . . , (𝑥ℓ, 𝜎ℓ)) : Parse 𝜎𝜏 = (prms, 𝑝𝑘2, 𝜏, 𝑁, 𝜌). Apply the
single-data evaluation algorithm. 𝜎* = Evalprms(𝑔, (𝑥1, 𝜎1), . . . , (𝑥𝑁 , 𝜎𝑁)).

∙ Verify𝑝𝑘(𝑔, 𝑦, 𝜏, (𝜎𝜏 , 𝜎
*)) : Parse 𝜎𝜏 = (prms, 𝑝𝑘2, 𝜏, 𝑁, 𝜌) and accept if and only if the

following two conditions are satisfied:

1. Verify the parameters of the single-data homomorphic scheme and the dataset:
NH.Verify𝑝𝑘1((prms, 𝑝𝑘2, 𝜏, 𝑁), 𝜌) = accept, and

2. Verify the homomorphically computed signature: Verify′𝑝𝑘2(𝑔,Processprms(𝑔), 𝑦, 𝜎*) =
accept.

Remarks. We note that that there is no a-prior bound on the size of the datasets in this
construction. However, since 𝜎𝜏 includes the description of the public parameters of the
single-data homomorphic scheme, these parameters must be small (as in our construction in
the Random Oracle model).

Correctness. Correctness of the scheme follows readily from the correctness of the regular
signature scheme and the single-data homomorphic signature scheme.

Security. On the high level, security follows from the fact that by the security property
of the standard signature scheme, the adversary cannot modify the data size or the public
parameters of the single-data signature scheme. And, given the correct parameters of the
single-data signature scheme, we can efficiently verify the result of the computation by
verifying the homomorphically computed signature.

7Note that we do not define a separate PrmsGen or Process algorithms, since this construction does not
support efficient verification with preprocessing.
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Theorem 6.4.2. Assume 𝒮 ′ is a selectively secure single-data homomorphic signature
scheme and 𝒮𝑛ℎ is a regular signature scheme. Then, 𝒮 is a fully secure many-dataset
homomorphic signature scheme.

Proof. We prove the security via a series of indistinguishable games.

∙ Let Game 0 be the multi-data security game.

∙ Let Game 1 be the modified version of Game 1, except the attacker loses the game
if it outputs a non-homomorphic forgery. That is, a forgery of the form (𝑔, 𝑦, 𝜏, (𝜎𝜏 =
(prms, 𝑝𝑘2, 𝜏, 𝑁

′, 𝜌), 𝜎*), where:

1. 𝜏 ̸= 𝜏𝑗 for any 𝑗, or

2. 𝜏 = 𝜏𝑗 for some 𝑗 but 𝑁 ′ ̸= 𝑁𝑗 or

3. 𝜏 = 𝜏𝑗 for some 𝑗, 𝑁 ′ = 𝑁𝑗, but prms ̸= prms𝑗 or 𝑝𝑘2 ̸= 𝑝𝑘2,𝑗, where prms𝑗, 𝑝𝑘2,𝑗
are the parameters used for single-data signature scheme.

That is, if the parameters of the dataset are invalid, the adversary losses the game.
Note that this is the superset of type I forgeries. Clearly, if there exists a winning
adversary in Game 1, then we can break the security of the regular signature scheme,
since we obtain a valid signature 𝜌 of (prms, 𝑝𝑘2, 𝜏, 𝑁

′) which was never signed before.

Now, assume there exists an adversary 𝒜 that wins in Game 1. Then, it must be able
to come up with a type II forgery. Hence, we can construct an adversary 𝒜′ that breaks
the security of the single-data homomorphic signature scheme. 𝒜′ generates parameters
of the regular signature scheme (𝑝𝑘1, 𝑠𝑘1) ← NH.KeyGen(1𝜆) and forwards 𝑝𝑘 = 𝑝𝑘1 to
𝒜. It also chooses an index 𝑗* of the dataset on which it guesses the type II will be
made. When 𝒜 asks to sign a dataset 𝑗 = 𝑗* with items (𝑥1, . . . , 𝑥𝑁), 𝒜′ forwards it
to the single-data challenger to obtain the signatures (𝜎1, . . . , 𝜎𝑁) along with the public
parameters (prms𝑗* , 𝑝𝑘2,𝑗*). It signs (prms𝑗* , 𝑝𝑘2,𝑗* , 𝜏, 𝑁) to obtain 𝜎𝜏 using 𝑠𝑘1 and forwards
(𝜎𝜏 , 𝜎1, . . . , 𝜎𝑁) to 𝒜. All other datasets 𝑗 ̸= 𝑗* it signs honestly by generating the
parameters of the single-data homomorphic signature scheme. Finally, suppose 𝒜 outputs
(𝑔, 𝜏, 𝑦, (𝜎𝜏 = (prms, 𝑝𝑘2, 𝜏, 𝑁

′, 𝜌), 𝜎*) of type II forgery. Then, assuming 𝒜′ guessed the
dataset correctly, we know that 𝜏 = 𝜏𝑗* , 𝑁 = 𝑁𝑗* , prms = prms𝑗* and 𝑝𝑘2 = 𝑝𝑘2,𝑗* ,
Verify′𝑝𝑘2(𝑔,Processprms(𝑔), 𝑦, 𝜎*) = accept but 𝑔 ̸= 𝑔(𝑥1, . . . , 𝑥𝑁). Hence, 𝒜′ can output
(𝑔, 𝑦, 𝜎*) to break the security of single-data homomorphic signature scheme. This shows
that if the regular signature scheme is secure and the single-data homomorphic signature
scheme is secure, then 𝒮 is also secure.

6.5 Context-Hiding Security
In many applications, we may also want to guarantee that a signature which certifies 𝑦
as the output of some computation 𝑔 over Alice’s data should not reveal anything about
the underlying data beyond the output of the computation. We will show how to achieve
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context-hiding by taking our original schemes which produces some signature 𝜎 (that is not
context hiding) and applying some procedure ̃︀𝜎 ← Hide𝑝𝑘,𝑦(𝜎) which makes the signature
context hiding. The “hiding” signature ̃︀𝜎 can be simulated given only 𝑔, 𝑦 no matter which
original signature 𝜎 was used to create it. One additional advantage of this procedure is
that it also compresses the size of the signature from 𝑚2 log 𝑞 bits needed to represent 𝜎 to
𝑂(𝑚 log 𝑞) bits needed to represent ̃︀𝜎. However, once the hiding procedure is applied, the
signatures no longer support additional homomorphic operations on them.

Context-Hiding Security for Signatures. We give a simulation-based notion of
security, requiring that a context-hiding signature ̃︀𝜎 can be simulated given knowledge of
only the computation 𝑔 and the output 𝑦, but without any other knowledge of Alice’s data.
The simulation remains indistinguishable even given the underlying data, the underlying
signatures, and even the public/secret key of the scheme. In other words, the derived
signature does not reveal anything beyond the output of the computation even to an attacker
that may have some partial information on the underlying values.

Definition 6.5.1. A single-data homomorphic signature supports context hiding if there
exist additional PPT procedures ̃︀𝜎 ← Hide𝑝𝑘,𝑦(𝜎) and HVerify𝑝𝑘(𝛼, 𝑦, 𝜎) such that:

∙ Correctness: For any prms ∈ PrmsGen(1𝜆, 1𝑁), (𝑝𝑘, 𝑠𝑘) ∈ KeyGen(1𝜆, prms) and
any 𝛼, 𝑦, 𝜎 such that Verify𝑝𝑘(𝛼, 𝑦, 𝜎) = accept, for any ̃︀𝜎 ∈ Hide𝑝𝑘,𝑦(𝜎) we have
HVerify𝑝𝑘(𝛼, 𝑦, ̃︀𝜎) = accept.

∙ Unforgeability: Single-data signature security holds when we replace the Verify procedure
by HVerify in the security game.

∙ Context-Hiding Security: There is a simulator Sim such that, for any fixed (worst-
case) choice of prms ∈ PrmsGen(1𝜆, 1𝑁), (𝑝𝑘, 𝑠𝑘) ∈ KeyGen(1𝜆, prms) and any 𝛼, 𝑦, 𝜎
such that Verify𝑝𝑘(𝛼, 𝑦, 𝜎) = accept we have: Hide𝑝𝑘,𝑦(𝜎) ≈ Sim(𝑠𝑘, 𝛼, 𝑦) where the
randomness is only over the random coins of the simulator and the Hide procedure.8 We
say that such schemes are statistically context hiding if the above indistinguishability
holds statistically.

The case of multi-data signatures is defined analogously.

Definition 6.5.2. A multi-data homomorphic signature supports context hiding if there
exist additional PPT procedures ̃︀𝜎 ← Hide𝑝𝑘,𝑥(𝜎), HVerify𝑝𝑘(𝑔,Process(𝑔), 𝑦, 𝜏, (𝜎𝜏 , 𝜎)) such
that:

∙ Correctness: For any prms ∈ PrmsGen(1𝜆, 1𝑁), (𝑝𝑘, 𝑠𝑘) ∈ KeyGen(1𝜆, prms) and any
𝛼, 𝑦, 𝜎𝜏 , 𝜎 such that Verify𝑝𝑘(𝛼, 𝑦, 𝜏, (𝜎𝜏 , 𝜎)) = accept, for any ̃︀𝜎 ∈ Hide𝑝𝑘,𝑦(𝜎) we have

HVerify𝑝𝑘(𝛼, 𝑦, 𝜏, (𝜎𝜏 , ̃︀𝜎)) = accept

8Since 𝑝𝑘, 𝑠𝑘, 𝛼, 𝑦, 𝜎 are fixed, indistinguishability holds even if these values are known to the distinguisher.
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∙ Unforgeability: Multi-data signature security holds when we replace the Verify procedure
by HVerify in the security game.

∙ Context-Hiding Security: Firstly, in the procedure (𝜎𝜏 , 𝜎1, . . . , 𝜎𝑁)← Sign𝑠𝑘(𝑥1, . . . , 𝑥𝑁 , 𝜏),
we require that 𝜎𝜏 can only depend on (𝑠𝑘,𝑁, 𝜏) but not on the data {𝑥𝑖}. Secondly,
we require that there is a simulator Sim such that, for any fixed (worst-case) choice
of prms ∈ PrmsGen(1𝜆, 1𝑁), (𝑝𝑘, 𝑠𝑘) ∈ KeyGen(1𝜆, prms) and any 𝛼, 𝑦, 𝜎, 𝜎𝜏 such that
Verify𝑝𝑘(𝛼, 𝑦, 𝜏, (𝜎𝜏 , 𝜎)) = accept we have:

Hide𝑝𝑘,𝑦(𝜎) ≈ Sim(𝑠𝑘, 𝛼, 𝑦, 𝜏, 𝜎𝜏 )

where the randomness is only over the random coins of the simulator and the Hide
procedure. We say that such schemes are statistically context hiding if the above
indistinguishability holds statistically.

Context-Hiding Security for HTDF. We also define a context hiding HTDF as an
augmentation of standard HTDFs. We will build context-hiding signatures by relying on
context-hiding HTDFs.

Definition 6.5.3. A context-hiding HTDF comes with two additional algorithms 𝑢̃ ←
HTDF.Hide𝑝𝑘,𝑥(𝑢) and HTDF.Verify𝑝𝑘(𝑢̃, 𝑥, 𝑣) satisfying:

∙ Correctness: For any (𝑝𝑘, 𝑠𝑘) ∈ KeyGen(1𝜆) any 𝑢 ∈ 𝒰 , any 𝑥 ∈ 𝒳 and any 𝑢̃ ∈
HTDF.Hide𝑝𝑘,𝑥(𝑢) we have HTDF.Verify𝑝𝑘(𝑢̃, 𝑥, 𝑓𝑝𝑘,𝑥(𝑢)) = accept.

∙ Claw-freeness on hidden inputs: We augment standard HTDF security with the
following requirement. For all PPT 𝒜 we require:

Pr

[︂
HTDF.Verify𝑝𝑘(𝑢̃′, 𝑥′, 𝑓𝑝𝑘,𝑥(𝑢)) = accept

𝑢 ∈ 𝒰 , 𝑥, 𝑥′ ∈ 𝒳 , 𝑥 ̸= 𝑥′

⃒⃒⃒⃒
(𝑝𝑘, 𝑠𝑘)← HTDF.KeyGen(1𝜆)

(𝑢, 𝑢̃′, 𝑥, 𝑥′)← 𝒜(1𝜆, 𝑝𝑘)

]︂
≤ negl(𝜆).

In other words, if an attacker know 𝑢 such that 𝑓𝑝𝑘,𝑥(𝑢) = 𝑣 then he cannot also produce
𝑢̃′ such that HTDF.Verify𝑝𝑘(𝑢̃′, 𝑥′, 𝑣) = accept when 𝑥′ ̸= 𝑥. 9

∙ Context Hiding: There is a simulator HTDF.Sim such that for all choices of (𝑝𝑘, 𝑠𝑘) ∈
HTDF.KeyGen(1𝜆), 𝑢 ∈ 𝒰 and 𝑥 ∈ 𝒳 the following distributions are indistinguishable:

HTDF.Hide𝑝𝑘,𝑥(𝑢) ≈ HTDF.Sim(𝑠𝑘, 𝑥, 𝑓𝑝𝑘,𝑥(𝑢)).

We say that such schemes are statistically context hiding if the above indistinguisha-
bility holds statistically.

9This implies standard HTDF security since any attacker that finds 𝑥 ̸= 𝑥′, 𝑢, 𝑢′ such that 𝑓𝑝𝑘,𝑥(𝑢) =
𝑓𝑝𝑘,𝑥′(𝑢′) can also apply 𝑢̃′ ← Hide𝑝𝑘,𝑥′(𝑢′) to break claw-freeness on hidden inputs.
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From Context-Hiding HTDFs to Signatures. We can easily modify the signature
schemes constructed in 6.3 (single-data) and 6.4 (multi-data) in the natural way to make
them context hiding by using a context-hiding HTDF. In particular, the procedure Hide of the
signature scheme is defined to be the same as that of the underlying HTDF. The procedure
HVerify𝑝𝑘(𝛼, 𝑦, ̃︀𝜎) of the signature scheme (resp. HVerify𝑝𝑘(𝛼, 𝑦, 𝜏, (𝜎𝜏 , ̃︀𝜎)) for a multi-data
scheme) are defined the same ways as the original Verify procedures of the signature, except
that, instead of checking 𝑓𝑝𝑘,𝑦(̃︀𝜎) = 𝛼 we now check HTDF.Verify𝑝𝑘(̃︀𝜎, 𝑦, 𝛼) = accept. It is
easy to check that this modification satisfies the given correctness and security requirements
as outlined below.

Unforgeability with the modified verification procedure HVerify follows from the “claw-
freeness on hidden inputs” property of the HTDF. This follows from the proof of
Theorem 6.3.1. In both proofs, the reduction knows one value 𝑢 ∈ 𝒰 such that 𝑓𝑝𝑘,𝑦(𝑢) = 𝑣*

and a signature forgery allows it to come up with 𝑢̃ such that HTDF.Verify𝑝𝑘(̃︀𝜎, 𝑦′, 𝑣*) =
accept for 𝑦′ ̸= 𝑦.

Context-Hiding security of the signature scheme follows from that of the HTDF. We define
the signature simulator Sim(𝑠𝑘, 𝑔, 𝑦, [𝜏, 𝜎𝜏 ]) to compute the value 𝑣* = Eval𝑖𝑛𝑝𝑘(𝑔, 𝑣1, . . . , 𝑣𝑁)
as is done by the verification procedure of the signature schemes. It then output ̃︀𝜎 ←
HTDF.Sim(𝑠𝑘, 𝑦, 𝑣*). The indistinguishability of the signature simulator follows form that of
the HTDF simulator.

General Construction via NIZKs. Before we give our main construction of context-
hiding HTDF and therefore context-hiding signatures, we mention that it is possible to
solve this problem generically using non-interactive zero knowledge (ZK) proof of knowledge
(PoK) NIZK-PoKs. In particular, we can make any HTDF context-hiding by setting 𝑢̃ ←
HTDF.Hide𝑝𝑘,𝑥(𝑢) to be a NIZK-PoK with the statement 𝑣 and witness 𝑢 for the relation
𝑓𝑝𝑘,𝑥(𝑢) = 𝑣. The HTDF.Verify procedure would simply verify the proof 𝑢̃. Claw-freeness
follows from the PoK property and context-hiding follows from ZK.10 However, this approach
requires an additional assumption (existence of NIZK-PoK) which is not known to follow
from SIS. Therefore, we now proceed to construct context-hiding HTDFs directly.

6.5.1 Construction of Context-Hiding HTDF

Lattice Preliminaries. Before giving our construction of context-hiding HTDFS, we start
by recalling some additional useful tools from lattice-based cryptography (abstracting as
much as possible). Let A,B ∈ Z𝑛×𝑚

𝑞 and let H = [A | B] ∈ Z𝑛×2𝑚
𝑞 . We will rely on the

existence of two algorithms SampleLeft and SampleRight which both take z ∈ Z𝑛
𝑞 and manage

to output some “short” vector r ∈ Z2𝑚
𝑞 such that H · r = z. The algorithm SampleLeft

does so by knowing some trapdoor td for the matrix A. The algorithm SampleRight
does so by knowing some “short” matrix U such that B = AU + 𝑦G for some 𝑦 ̸= 0.
Nevertheless, the outputs of SampleLeft and SampleRight are statistically indistinguishable.

10The syntactic definition would need to be modified slightly to include a common reference string (CRS).
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(See [CHKP12, ABB10a, MP12, BGG+14] for details on the following lemma; our exposition
follows [BGG+14] with additional abstraction.)

Lemma 6.5.1. Using the notation of Lemma 2.4.1, let 𝑛, 𝑞 ≥ 2, 𝑚 ≥ 𝑚*(𝑛, 𝑞) and 𝛽 be
parameters. Then there exist polynomial time algorithms SampleLeft, SampleRight and some
polynomial 𝑝𝑒𝑥𝑡𝑟𝑎(𝑛,𝑚, log 𝑞) such that for 𝛽′ := 𝛽 ·𝑝𝑒𝑥𝑡𝑟𝑎(𝑛,𝑚, log 𝑞) the following holds: For
any choice of (A, td) ∈ TrapSamp(1𝑛, 1𝑚, 𝑞), any z ∈ Z𝑛

𝑞 and any U ∈ Z𝑚×𝑚
𝑞 with ||U||∞ ≤ 𝛽

and any 𝑦 ∈ Z𝑞 with 𝑦 ̸= 0 let H = [A | AU + 𝑦G], where G is the matrix from part (3) of
Lemma 2.4.1. Then:

∙ For any r0 ∈ SampleLeft(H, td, z), r1 ∈ SampleRight(H,U, z) and for each 𝑏 ∈ {0, 1}
we have r𝑏 ∈ Z2𝑚

𝑞 , ||r𝑏||∞ ≤ 𝛽′ and H · r𝑏 = z.

∙ For r0 ← SampleLeft(H, td, z) and r1 ← SampleRight(H,U, z) we have r0 ≈ r1 are
statistically indistinguishable (the statistical distance is negligible in 𝑛).

HTDF with Context Hiding. We augment our construction of HTDFs from 6.2 to
add context-hiding security. Firstly, we make the following modifications to the underlying
HTDF construction.

∙ We restrict the index space 𝒳 to just bits 𝒳 = {0, 1} ⊆ Z𝑞 (rather than 𝒳 = Z𝑞 as
previously). We also modify the parameters and set 𝛽𝑆𝐼𝑆 = 2𝜔(log 𝜆)(𝛽𝑚𝑎𝑥)2 to be larger
than before (which impacts how 𝑞, 𝑛 are chosen to maintain security).

∙ We augment the public-key to 𝑝𝑘 = (A, z) by appending z ∈ Z𝑛
𝑞 which is chosen

by selecting a random r ← {0, 1}𝑚 and setting z = A · r (and discarding r).11 Let
𝑝𝑒𝑥𝑡𝑟𝑎(𝑛,𝑚, log 𝑞) = poly(𝜆) be the polynomial form Lemma 6.5.1 and define 𝛽𝑚𝑎𝑥 =
𝛽𝑚𝑎𝑥 · 𝑝𝑒𝑥𝑡𝑟𝑎(𝑛,𝑚, log 𝑞).

In addition, we add the following procedures for context-hiding security.

∙ ũ← HTDF.Hide𝑝𝑘,𝑥(U): Let V = 𝑓𝑝𝑘,𝑥(U) = AU + 𝑥G. Set

H := [A | V + (𝑥− 1)G] = [A | AU + (2𝑥− 1)G].

Note that (2𝑥 − 1) ∈ {−1, 1} ≠ 0. Output ũ ← SampleRight(H,U, z). Note that
H · ũ = z and ||ũ||∞ ≤ 𝛽𝑚𝑎𝑥.

∙ HTDF.Verify𝑝𝑘(ũ, 𝑥,V): Compute H := [A | V + (𝑥− 1)G]. Check ||ũ||∞ ≤ 𝛽𝑚𝑎𝑥 and
H · ũ = z. If so accept, else reject.

∙ For context-hiding security, we define HTDF.Sim(𝑠𝑘 = td, 𝑥,V) which computes H :=
[A | V + (𝑥− 1)G] and outputs ũ← SampleLeft(H, td, z).

11We note that, using the leftover-hash-lemma, we can show that this is statistically close to choosing
z← Z𝑛

𝑞 at random. However, we will not need to rely on this fact.
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Theorem 6.5.2. The above scheme is statistically context-hiding. It satisfies claw-freeness
on hidden inputs under the SIS(𝑛,𝑚, 𝑞, 𝛽𝑆𝐼𝑆) assumption.

Proof. It’s easy to check that correctness holds. Statistical context-hiding security follows
directly from Lemma 6.5.1. We are left to show claw-freeness on hidden inputs.

The proof of security closely follows that of Theorem 6.2.1. Assume that 𝒜 is a PPT
attacker that breaks this security property of the scheme. As a first step, we modify the
game so that, instead of sampling (A, td) ← TrapSamp(1𝑛, 1𝑚, 𝑞) and setting 𝑝𝑘 := A and
𝑠𝑘 = td, we just choose A ← Z𝑛×𝑚

𝑞 uniformly at random. This modification is statistically
indistinguishable by the security of TrapSamp (see Lemma 2.4.1, part (2)). In particular, the
probability of 𝒜 winning the modified game remains non-negligible.

We now show that an attacker who wins the above-modified game can be used to solve
the SIS problem. The reduction gets a challenge matrix A of the SIS problem and chooses
r ← {0, 1}𝑚 and sets z = A · r. It gives the public key 𝑝𝑘 = (A, z) to the attacker 𝒜. The
attacker wins if he comes up with bits 𝑥 ̸= 𝑥′ ∈ {0, 1} and values U, ũ′ such that ||U||∞ ≤
𝛽𝑚𝑎𝑥, ||ũ′||∞ ≤ 𝛽𝑚𝑎𝑥, and H ·ũ′ = z where H is defined by setting V := 𝑓𝑝𝑘,𝑥(U) = AU+𝑥G
and

H := [A | V + (𝑥′ − 1)G] = [A | AU + (𝑥+ 𝑥′ − 1)G] = [A | AU]

where the last equality follows since 𝑥 ̸= 𝑥′ ⇒ 𝑥+ 𝑥′ = 1. Let’s write ũ′ = (r′1, r
′
2) where

r′1, r
′
2 ∈ Z𝑚

𝑞 are the first and last 𝑚 components of ũ′ respectively. Then:

H · ũ′ = z ⇒ Ar1 + (AU)r2 = Ar ⇒ A(Ur2 + r1 − r) = 0

Furthermore

||(Ur2 + r1 − r)||∞ ≤ 𝑚𝛽𝑚𝑎𝑥𝛽𝑚𝑎𝑥 + 𝛽𝑚𝑎𝑥 + 1 ≤ poly(𝜆)(𝛽𝑚𝑎𝑥)2 ≤ 𝛽𝑆𝐼𝑆.

Therefore, it remains to show that (Ur2 + r1 − r) ̸= 0. We use the same argument as in
the proof of Theorem 6.2.1: the randomness r is independent of U, r1, r2 when conditioned
on z. Since z is short, r still has 𝑚− 𝑛 log 𝑞 = 𝜔(log 𝜆) bits of conditional entropy left and
therefore Pr[Ur2 + r1 = r] ≤ negl(𝜆). This concludes the proof.

6.6 HTDFs and Fully Homomorphic Encryption
We briefly and informally sketch an interesting conceptual connection between fully
homomorphic encryption and signatures. We show that both of these primitives can be
constructed from a type of HTDFs: signatures correspond to equivocable HTDFs, whereas
encryption corresponds to extractable HTDFs.

For equivocable HTDFs, which was the notion we defined in this paper, we wanted the
output 𝑣 = 𝑓𝑝𝑘,𝑥(𝑢) over a random 𝑢 to statistically hide 𝑥 and to have an “equivocation
trapdoor” 𝑠𝑘 that allows us to open any 𝑣 to any index 𝑥, by providing a value 𝑢 such
that 𝑓𝑝𝑘,𝑥(𝑢) = 𝑣. For an adversary without this trapdoor, each output 𝑣 would be
computationally binding to 𝑥.
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For an extractable HTDF, we would instead want 𝑣 = 𝑓𝑝𝑘,𝑥(𝑢) to be statistically binding
to 𝑥 and to have an “extraction trapdoor” 𝑠𝑘 that allows us to extract/decrypt the value 𝑥
from 𝑣. For an adversary without this trapdoor, the output 𝑣 would computationally hide
𝑥.

In 6.2, we gave a construction of equivocable HTDFs with security based on the SIS
problem. We now show that, by modifying the key generation procedure of our construction,
we can easily convert it to an extractable HTDF. In fact, there is a single HTDF constriction
with two indistinguishable modes of choosing the public key 𝑝𝑘: in one mode, the resulting
HTDF is equivocable with an equivocation trapdoor 𝑠𝑘 and in the other more the resulting
HTDF is extractable with extraction trapdoor 𝑠𝑘. The indistinguishability of these two
modes follows from the learning with errors (LWE) assumption.

Recall that in our construction of HTDFs we set 𝑝𝑘 = A where A ∈ Z𝑛×𝑚
𝑞 is (statistically

close to) a uniformly random matrix. This corresponds to the equivocation mode. For the
extractable mode we choose a matrix A′ ← Z(𝑛−1)×𝑚

𝑞 and a secret s′ ← Z𝑛−1
𝑞 . We set

A =

(︂
A′

s′A′ + e

)︂
where e is some appropriately sampled short “noise vector”. This corresponds to a
learning with errors (LWE) instance with secret s′, and therefore A chosen as above is
computationally indistinguishable from a uniformly random. Let s = (−s′, 1) ∈ Z𝑛

𝑞 so that
sA = e. We set 𝑝𝑘 = A and 𝑠𝑘 = s to be the public key and secret extraction key of the
HTDF. Otherwise, the construction 𝑓𝑝𝑘,𝑥(U) = AU + 𝑥G and the homomorphic operations
are performed the exact same way as in 6.2.2 and 6.2.3. Assume V = 𝑓𝑝𝑘,𝑥(U) = AU + 𝑥G
where U is short. Let z = (0, . . . , 0, 𝑟) ∈ Z𝑛

𝑞 where 𝑟 is a scalar of “medium size”. We can
then compute

s ·V ·G−1(z) = e ·U ·G−1(z) + 𝑥 · ⟨s, z⟩ = 𝑥 · 𝑟 + 𝑒′

where 𝑒′ is short. As long as the parameters are chosen so that |𝑥 · 𝑟 + 𝑒′| < 𝑞/2 so there is
no wrap-around, and |𝑒′| < |𝑟|, the above allows us to extract 𝑥.

With the above HTDF in extraction mode, if we think of Enc𝑝𝑘(𝑥;𝑢) = 𝑓𝑝𝑘,𝑥(𝑢) as
a public-key encryption scheme with randomness 𝑢, and of the Eval𝑜𝑢𝑡 procedure as a
homomorphic evaluation on ciphertexts, then this scheme corresponds to the FHE scheme
of Gentry, Sahai and Waters [GSW13].

6.7 Conclusions and Open Problems
In this work, we construct the first leveled fully homomorphic signature schemes. It remains
an open problem to get rid of the leveled aspect and ideally come up with a signature scheme
where there is no a priori bound on the depth of the circuits that can be evaluated and the
signature size stays fixed. It also remains an open problem to come up with a (leveled) fully
homomorphic signature scheme with short public parameters under a standard assumption
without random oracles.
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